Zeitschrift: Jugend und Sport : Fachzeitschrift für Leibesübungen der

Eidgenössischen Turn- und Sportschule Magglingen

Herausgeber: Eidgenössische Turn- und Sportschule Magglingen

Band: 31 (1974)

Heft: 9

Artikel: Adaptations ultrastructurelles dans le muscle squelettique humain

soumis à un entraînement d'endurance

Autor: Mœsch, H. / Howald, H.

DOI: https://doi.org/10.5169/seals-994981

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Adaptations ultrastructurelles et biochimiques dans le muscle squelettique humain soumis à un entraînement d'endurance *

H. Mœsch et H. Howald

Les sportifs pratiquant une discipline d'endurance ne sont généralement jamais obèses. On peut facilement mettre ce fait en évidence en mesurant les plis cutanés par la méthode de *Allen* (table 1).

Table 1: Caractéristiques corporelles et absorption d'oxygène (valeurs moyennes et déviations standard)

, ,	Personnes sédentaires	Sportifs entraînés	2 p.
E F	(n = 24)	(n = 35)	<
Proportion de la masse graisseuse par rapport à la masse corporelle maigre (%); obésité $>$ 29%	36.3±9.3	11.5±5.9	0.001
Absorption maximale d'oxygène (ml/min · kg)	41.6±5.0	68.1±7.6	0.001

On peut alors se poser la question de savoir en quoi le métabolisme d'un sportif endurant se distingue de celui d'une personne sédentaire. En effet, une mesure métabolique, la mesure de l'absorption maximale d'oxygène sous effort physique important, nous permet de préciser cette différence et de montrer que les athlètes mentionnés se caractérisent par une valeur d'absorption maximale d'oxygène bien plus grande que celle de personnes sédentaires (table 1). Il s'agit là d'une mesure concernant tout l'organisme, et comprenant à la fois le système de transport et l'utilisation de l'oxygène. Alors que le système de transport, soit l'appareil respiratoire, cardio-vasculaire et tout ce qui s'y rapporte, a déjà fait l'objet de nombreuses recherches, il n'en est pas de même pour l'utilisation de l'oxygène dans le muscle, au niveau cellulaire. Ceci est d'autant plus étonnant que les muscles représentent le 40% de la masse corporelle et que ce fait doit nécessairement avoir des conséquences importantes sur le métabolisme général.

Pour ces raisons, nous avons choisi de porter notre attention sur les phénomènes d'adaptation cellulaires dans le muscle, dûs à l'entraînement.

Méthodes

L'accès direct au tissus musculaire est réalisé par une biopsie à l'aiguille, selon la méthode de *Bergström*.

Dans une première série on fit de chaque biopsie 60 coupes que l'on examina au microscope électronique, à l'agrandissement de 1:100'000. Les prises de vue correspondantes furent analysées ensuite quantitativement suivant la méthode stéréologique de Weibel.

Dans une autre série, le tissu musculaire fut analysé quant à sa teneur enzymatique. On mesura les activités de l'héxokinase EC 2.7.1.1 (HK), de la glyceraldéhyde-3-phosphate deshydrogénase (NAD) 1.2.1.12 (GAPDH), de la succinate déshydrogénase EC 1.3.99.1 (SDH) et de la hydroxyacyl-CoA-deshydrogénase EC 1.1.1.35 (HACoADH). Le choix des enzymes à examiner était guidé par le souci d'avoir d'une part à la fois des enzymes glycolytiques et de l'oxydation des acides gras et d'autre part aussi bien des enzymes intramitochondriaux qu'extramitochondriaux.

Résultats

Au vu des valeurs morphométriques il est évident qu'aussi bien le volume mitochondrial que la surface des crêtes mitochondriales augmentent avec l'état d'entraînement (table 2). La quantité de lipides intracellulaires augmente aussi très fortement, fait qui peut être considéré comme établissement d'une réserve fonctionelle.

Table 2: Paramètres ultrastructurels du tissu musculaire

	Personnes sédentaires	Sportifs entraînés	2 p.	
	(n = 9)	(n = 5)	<	
Volume mitochondrial (%)	5.86 ± 0.49	$\textbf{8.60} \!\pm\! \textbf{0.81}$	0.001	
Surface des crêtes mito- chondriales (m²/cm³)	1.06±0.19	1.71±0.25	0.001	
Volume de lipides intra- cellulaires (%)	0.34±0.18	0.85±0.41	0.005	

Du point de vue biochimique, on remarque les variations suivantes des activités enzymatiques tissulaires (table 3):

Pour la chaîne glycolytique, l'activité des enzymes HK et GAPDH ne varie guère. Par contre, l'activité des enzymes SDH (cycle de Krebs) et HACoADH (ß-oxydation des acides gras) augmente très fortement. Ceci est d'autant plus significatif que les deux sont des enzymes intramitochondriaux.

Table 3: Activités enzymatiques du tissu musculaire (mmoles/min · kg)

	Personnes sédentaires	Sportifs entraînés	2 p.
9 8	(n = 24)	(n = 35)	<
HK	1.61 ± 0.57	1.65 ± 0.50	n.s.
GAPDH	321 ± 98	$260\!\pm\!91$	0.025
SDH	4.71 ± 1.54	9.46 ± 2.80	0.001
HACoADH	21.3 ± 10.2	29.1 ± 7.9	0.005
GAPDH/HACoADH	18.0 ± 8.9	$\textbf{9.1} \!\pm\! \textbf{4.4}$	0.001

Conclusions

En groupant les résultats obtenus, on peut constater que ce n'est pas le transport d'oyxgène seul qui limite le travail musculaire, mais aussi l'utilisation possible des substrats.

Selon les travaux de *Pette*, certains quotients enzymatiques permettent d'examiner comparativement le métabolisme d'un organisme avec un autre, afin de préciser quels sont les substrats essentiels à l'un et à l'autre. Au vu du quotient GAPDH/HACoADH qui change d'un facteur 2 en faveur de l'oxydation des acides gras, on peut admettre, chez les personnes entraînées en endurance, une réorientation importante du métabolisme énergétique musculaire vers une utilisation préférentielle des lipides.

avec le support du Fonds national suisse de la recherche scientifique (crédit no 3.561.71)

En ce qui concerne l'augmentation des inclusions de lipides dans la cellule musculaire, il s'agit certainement d'une réserve fonctionnelle, immédiatement disponible, puisque le système enzymatique nécessaire est développé dans ce sens. D'autres expériences nous ont montré que cette réserve est effectivement utilisée lors d'un effort prolongé.

En conclusion, on peut affirmer qu'un entraînement en endurance est certainement bénéfique pour l'organisme. D'une part, de par l'activité physique la dépense calorique est plus grande, ce qui prévient la constitution de dépots lipidiques importants. D'un autre côté, les muscles actifs utilisent bien plus de lipides pour leur métabolisme énergétique, par suite d'une restructuration partielle, enzymatique, de l'utilisation des substrats. Ce changement est d'autant plus important pour le bilan lipidique du corps que le système musculaire représente son plus grand organe. Par ailleurs, certaines données cliniques indiquent bien cette tendance métabolique, puisque l'on sait que chez les personnes entraînées, les taux sériques en cholestérol et en triglycérides sont bien plus bas que chez des personnes sédentaires, ou même obèses.

Références à disposition chez les auteurs.

Ultrastrukturelle und biochemische Anpassungserscheinungen im ausdauertrainierten menschlichen Skelettmuskel (Zusammenfassung)

Ausdauersportler sind nie übergewichtig und zeichnen sich im Vergleich mit Nichtsportlern durch eine verbesserte maximale Sauerstoffaufnahmekapazität aus. Auf der Ebene der Muskelzelle findet letztere ihren Ausdruck in einer Zunahme des Mitochondrienvolumens und einer Vergrösserung der Mitochondrien-Membranoberflächen sowie einer verstärkten Einlagerung von feinsten Fetttröpfchen als Energiereserven. Durch entsprechende Steigerung von Enzymaktivitäten ist die ausdauertrainierte Muskelzelle auch in der Lage, ihren erhöhten Energiebedarf vermehrt durch Abbau von Fetten zu decken.

Ausdauertraining schützt demnach den Organismus nicht nur durch vermehrten Kalorienverbrauch vor Übergewicht, sondern auch durch einen gesteigerten Fettumsatz in der Skelettmuskulatur, die als grösstes Organ 40 Prozent der Gesamtkörpermasse ausmacht.

MITTEILUNGEN

aus dem Forschungsinstitut der Eidgenössischen Turn- und Sportschule

INFORMATIONS

de l'Institut de recherches de l'Ecole fédérale de gymnastique et de sport

Berichte des Forschungsinstitutes Nr. 15, Herbst 1973

Zur Persönlichkeit der Spitzensportler in der Schweiz

von Andreas Jost

In Nr. 15 der Berichte des Forschungsinstitutes werden die Ergebnisse einer Untersuchung von Andreas Jost, Bern, über die Persönlichkeit der Spitzensportler in der Schweiz veröffentlicht. Die sorgfältig durchgeführten, umfangreichen Erhebungen sind für den sozialwissenschaftlichen Bereich der Sportwissenschaft in der Schweiz «Neuland». Untersuchungen dieser Art und dieser Qualität sind bei uns noch selten.

Bei den 140 Spitzensportlern aus sieben Sportarten wurden dreissig Variablen unter die Lupe genommen. Obwohl Jost nur Durchschnittswerte als Ergebnisse vorstellen kann, weist das ermittelte Persönlichkeitsbild interessante Aspekte auf:

Der untersuchte Spitzensportler ist überdurchschnittlich intelligent, kann sich sehr gut konzentrieren und arbeitet zuverlässig und ohne Fehler. Seine Motivationsstärke scheint überdurchschnittlich ausgeprägt zu sein. Er ist hart, realistisch und besitzt eine grosse Triebstärke. Er scheint eine angeborene geistige Wachsamkeit und erworbene soziale Fähigkeiten (Disziplin, Höflichkeit) zu haben. Einerseits ist er enthusiastisch, fröhlich und heiter, anderseits hat er auch Züge von gefühlsab-

hängigen, emotional unreifen, unterwürfigen Menschen, die scheu und furchtsam sind. Ein weiteres Teilresultat hat ergeben, dass Sportler als furchtsam, unsicher, depressiv, stimmungsabhängig und leicht in ihren Gefühlen verletzlich scheinen. Jost schliesst so richtigerweise nicht aus, dass die widersprüchlichen Züge beide richtig sein könnten. Vielleicht sind Spitzensportler scheu, furchtsam und introvertiert, möchten sich jedoch gegenüber dem Trainer oder dem Psychologen lieber mit sozialanerkannten Verhaltensweisen zeigen, also ohne Angst und extravertiert.

Die einzelnen Sportgruppen liessen sich recht gut voneinander unterscheiden. Die Unterschiede sind nicht nur von der Sportart, sondern auch von den Altersunterschieden und der sportlichen Qualität abhängig. Die grössten Unterschiede bezogen sich auf die Leistungstests, verglichen mit der Trainingszeit, oder auf Tests, die etwa Kontaktfähigkeit und Selbstkontrolle erfassen.

Die Erhebung von Jost – eine Lizentiatsarbeit an der Universität Bern – kam zustande in Zusammenarbeit mit dem Fachbereich «Sozialwissenschaften» am Forschungsinstitut der ETS.