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Fung-Yee Chan, Winnipeg

Graduation, Bootstrap and Confidence Intervals

Introduction

The familiar graduation methods used in actuarial science provide us point
estimates, and the methods fall short in providing confidence intervals. In this

paper, we would like to supplement them with a bootstrap confidence interval
and see their coverage accuracy and interval lengths, and how their shapes

follow the point estimates.

In section 1, we review the four graduation methods to be used: moving
weighted average minimum R?. cross validation polynomial regression,

supersmoother, and basis-spline.
In section 2, we give a brief introduction to the bootstrap methods. There are

many versions of bootstrap methods: for instance, percentile, bias-corrected
accelerated, bootstrap f and short bootstrap f methods. In this paper, the

percentile method is used to produce confidence intervals, and the other
methods will be applied in a sequel paper.
In section 3, we apply the graduation methods to 1979 English Life Table No.
13 (male). Although the graduation methods used here have been around for
some time, this paper uses them together for the first time on a common data

set. These methods can then also be compared in terms of smoothness, squares
of residuals, mean weighted sum of squares of residuals and cross-validated

scores.

In section 4, we outline some future work.

1 Graduation Methods

As the following methods are quite familiar to the actuaries, extensive quote
of literature does not seem necessary. On each method we will include only
a few representative names.

Mitteilungen der Schwei/. Vereinigung der Versicherungsmathematiker, Heft 1/1989
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A. Mowing-weiglîted-auerage minimum method (see Grewi//e, 1974)

The 2m + 1 term m-w-a formula is given by

m

$ X v-.-
;=-m

where the coefficients are determined by the required properties that the
formula reproduces polynomials of degrees up to a certain degree d, usually
cubic, and minimizes the zth differences of graduated values. Usually z is

taken as 2 or 3.

In essence, the graduation problem is solved by minimizing

È
y=-n-z

subject to the condition

m m

ûj 1 and 0,
_/=—m y'=—m

where is the zth difference operator.

B. Cross-wa/irfflfion regression method (see Stone, 1974)

The cross validation method is used to determine the degree d of the estimated

polynomial regression model. For instance, for a given d, let the polynomial
regression model be

f ßo + ßi* "I h ßd*'* + *

where e is the error term, and let

be its least squares estimated polynomial based on n — 1 data points,

(x„jq),... ,(x,._i,y,„i),(x,+i,y,+,),... ,(x„,y„), i.e. all data except the ith pair
are used in the estimation. The y, is saved to cross validate the y/", the value



129

of y(0 at x,- We can then obtain the weighted cross-validation score associated

with the degree d as

The optimal value d is the degree which gives the minimum cross-validation
score among the various scores of d 0,1,2,... n — 2.

C. Snpersmoot/ier (see Friedman, 1984)

This method is a varying span moving average method, similar to the m-w-a
method above, except that the span, J„ which is the number of observations
being included in averaging the w values around y,, can be chosen individually.
The graduation formula can be described as

;=;+(V2)

where the J, are chosen to minimize the weighted average

F>. 5as/,s-sp/me (see Si/rerman, 1985)

This method produces a fitted curve / which minimizes

where / is a sum of basis splines which are cubic polynomials on each

interval (x,-, x,+ ,); at each x,., the first and second order derivatives /' and /"
are. continuous. This is analogous to Whittaker-Henderson graduation, using
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/" rather than z-th difference as a measure of smoothness. The constant
/c, which balances the two goals of fit and smoothness, is determined by
cross-validation.

2 Bootstrap methods

Since £/rcm (1981) introduced this Monte Carlo simulation method, bootstrap
has caught the attention of both theoretical and applied statisticians.
Discussion of the following methods can be found in £/ron (1985, 1986,

1987). The latest paper by Hal/ (1988) put the various bootstrap methods in

a unified framework and derived their theoretical properties. Porfnoy (1987)

applied bootstrap to investigate the cross over in sex-distinct mortality rates.

/4. Standard error estimation

In the different graduation methods we have different estimates of the true
values underlying the given data set. In order to answer the question how
good are these graduated values as estimates of the true values, we may rely
on bootstrap samples. Assume that the (x,-, >',) are related by y,. /(x,) + e,-,

where / is unknown, and e,- ~ IV(0, er,). The bootstrap algorithm proceeds as

follows:

a. Use y,-, the graduated value as a point estimate of /(x,), and residue
r? (y, —y,)^- We can smooth the r? over i and then use it as an estimate of
the variance of.

h. For each i, generate an independent observation e* from IV(0, u,), and
let y* yo + e*. The bootstrap sample (xj,y*),(xj.yJ),,(x„,y*) is then
considered as a new set of data points. The sample is smoothed to produce

c. When step b is repeated, say, 100 times, then for each i, the mean and
variance of y, can be approximated respectively by

Var (yf) ^ the 100 (yf - Av (y,*))^ values ^
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After smoothed over i, Av (yd) and Var(y,*) are the bootstrap mean and

variance.

ß. Con/Idence interua/s constructions

From the above estimate standard error, we have several ways to construct
confidence intervals:

o. Standard percentile method
We use the 100a point of a standard normal variate. For instance, the 90 %

central confidence interval is

Av(>',*) + 1.65vvar(y*)

b. Percentile t method

It is similar to the above, except that the t table is used for the 100« percentile
point.

c. Bootstrap t method

For each i, let TAV (y,*) be the 25 % trimmed mean, and Tq (y/) be the distance
between the 75th and 25th percentiles of y,\ We can smooth TAV (y,*) and

Iq (j,*) over i. The bootstrap t 90 % confidence interval is

[TAV (?.*) - Ig (y.> °5, TAV (yd) + Iq (y,>«],

where g-'- and are estimated from the critical points in the empirical
distribution of the bootstrap values.

d. Bias corrected method & bias corrected accelerated method
The bias corrected method assumes that normality and constant standard

error can be achieved by some transformation, z g(y) and z g(y). Then

(z — z)/t ~ A(—Zq, 1), with t being the constant standard error of z, and Zq

the bias constant, and z will have the confidence interval z + tip + fzV The
confidence interval for y is obtained by the inverse transformation y g~' (z).

The bias corrected accelerated method assumes there is some g which
normalizes the standard error, with the result (z — z)/t ~ Af(—z^cr,, ct,) where

a, 1 + a£ for some bias constant a.
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3 The English Life Table Example

We now apply the above methods with The 1979 English Life Table No. 13,

for males age 2-40. We set i x,, with i ranging from 2 to 40. Using crude

mortality rate u,, exposure E,, graduated mortality rates b, from The 1969

English Life Table No. 12, for males age 2-40, and weight w,. which is defined

as £j/b,(l — b,-), we graduate y, u, — ft,-. The end result is the graduated
mortality u, which is obtained by û, y, + b,.

A IVumerica/ results o/ the graduation methods

a. Moving-weighted average minimum K:
We use z 3 and m 5, i.e. a symmetric eleven term formula with coefficients

(a_5,... ,«o) (—.0279,—.0268,.0357,.1413,.2387). We use the natural method
(Greville 1981) to extend y, for graduating the end values.

These extended y, are:

U>'m i + G>h2 + ' ' ' + CsLj+5. for i 1,0,... -3, and

b; + C2Li_2 + ' ' ' + Cjy,-_5, for / 41,42,... 45,

where

(c,,C2,... ,c;) (1.1608, 0.2811, -0.1410, -0.2045, -0.0964).

b. Cross-validation polynomial regression

Computation by Brooks et al. (1986) showed that for the same set of data
the degree 3 gives minimum cross-validation score. The estimated polynomial
regression is y —0.001985 + 0.3155.x — 1.7086.\'^ + 0.02435.\"\

c. Supersmoother
Computation was done using an algorithm developed by J. Friedman and B4

Stuetz/e of Stanford University.

d. Basis-Spline

Computation was done using a package developed by F. Su//iuan of University
of California, Berkeley, using cubic splines.

The graduated values from all these four methods are given in Table 1.
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The ungraduated values >>, u- — b, and graduated values jf and u, for the 1979 English Life Tables No. 13

(males ages / 2 to 40), where the u, are the crude mortality rates, the b, are the graduated mortality rates for
the 1969 English Life Table No. 12, and the w,- are the weights.

GRADUATE D V A L U E S

6 6 6 -6 Cross- Val idation Movinq-Weighted -Average Super smoother Da s i s - Splinei 1 Ov* l 10 u. 10 b.i 10 V1 10^y.' 1
10®ù.

1
10®y.' 1

ÎO^Û.
1

10®y.* 1
10*û. 10®y. 10®û.

1

2 -187 803 990 1205.5 -144 9 045.1 -153.8 826.2 -120.5 869.5 -109.2 880. 8

3 - 64 626 690 1757.7 -122.8 567.2 -120.5 569.2 -110.9 579.1 -100.5 589.5
4 -106 514 620 1989.8 -103.7 516.3 - 96.4 523 .6 -101.4 518.6 - 92.0 528 .0
5 -108 462 570 2201.8 - 87.4 482 6 - 81.1 488 9 - 91.1 478.9 - 83.7 486.3
6 - 53 467 520 2428.7 - 73.9 446.1 - 72.4 447 .3 - 82.3 437 7 - 75.8 444 .2
7 - 78 413 480 2616.8 - 62.8 417.2 - 66.7 413.3 - 73.9 406.1 - 68.6 411.4
8 - 71 369 440 2811.3 - 64 .2 375.8 - 61.4 378.6 - 65.9 374 .1 - 62.1 377 9

9 --50 360 410 2955.9 - 47.8 362 .2 - 56.0 354 0 - 59.9 350.1 - 56.5 353 .5
10 - 55 335 390 3027.5 - 43.5 346. 5 - 51.9 330.0 - 55.0 335.0 - 51.8 338.2
11 - 46 334 380 3027.5 - 41.2 338 .8 - 49.6 330.4 -48.3 331.7 - 48.3 331.7
12 - 52 323 380 2955.6 - 40.7 339.3 - 48.9 331.1 - 43.2 336 .8 - 46.0 334 .0
13 - 36 374 410 2682.4 -41.8 368 .2 - 43.5 336.5 - 40.6 369.4 - 45.0 365.0
14 - 30 440 470 2285.6 -44.6 425.4 - 30.8 439.2 - 39.4 430.6 - 45.6 4 24.4
15 - 78 512 590 1775.3 - 48.5 541. 5 - 16.4 573 .6 -41.6 548 4 - 47.7 54 2 3

16 31 811 780 1323.9 - 53.7 726. 3 - 10.7 769.3 - 47.8 732 2 - 51 .5 728. 5

17 46 1036 990 1033 0 - 60.1 929. 9 - 19.8 970.2 - 56.3 933 .7 - 56.8 933 .2
18 - 86 1034 1120 906.9 - 67.4 1052.6 - 45.1 1074 .9 - 60.6 1051.4 - 63.5 1056.5
19 - 91 1079 1170 865.1 - 75.4 1094.6 - 77.6 1092.4 - 82.0 1088.0 -71.3 1098.7
20 -122 1068 1190 861 .2 - 84 .1 1105.9 -110.3 1079.7 - 97.0 1093.0 - 79.7 1110.3
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i 10%. 10%

21 -119 1061

22 -151 989

23 -127 953

24 -202 818

25 -120 870

26 - 67 913

27 - 84 916

28 -172 868

29 -194 896

30 -160 990

31 -149 1061

32 -196 1084

33 -242 1118

34 -243 1207

35 -152 1398

36 -140 1530

37 -218 1592

38 -255 1705

39 -173 1907

40 -104 2246

10%^ 10~%^

1130 894.6
1140 973.0
1080 1082.6
1020 1131.6

990 1111.3
980 1045.8

1000 998.2
1040 918.3
1290 828.5
1150 759.7
1210 722.9
1280 693.2
1360 651.5
1450 605.0
1550 557.8
1670 508.2
1810 464.5
1960 430.9
2140 403.0
2350 372.4

Cross- Val idation
10%. 10%^

-93.3 1086.6
-102.9 1037.1
-112.6 967.4
-122.4 897.6
-132 .1 857 .9
-141.6 838 .4

-150.7 849. 3

-159.3 880.7
-167.2 922 .8
-174 3 975.7
-180.4 1029.6
-185.4 1094.6
-189.1 1170.9
-191.5 1258.5
-192.3 1357.7
-191.4 1478 .6
-188.6 1621.4
-183.9 1774.1
-177.0 1963.0
-167.9 2182.1

GRADUATED VALUES
Moving-Weighted-Average

10%. 10%^

-136.3 1043.7
-148.8 991.2

-148.2 931.8

-137.3 882 .7

-122.7 867.3
-115.8 864 .2

-120.6 879.4

-134.9 905. 1

-153.4 936.6
-174 .1 975.6

-190.7 1019.3
-200.3 1079.7

-202.3 1157.7
-200.8 1249.2

-198 .8 1351.2

-198.1 1471.9
-198.7 1611.3

-193.9 1766.1
-173.1 1966.9
-131.3 2218 .7

Super smoother
10%. 10%^

-108 .9 1071.1
-119.7 1020.3
-126.7 953 3

-131.1 888.9
•133.6 856.4
-139.6 840.4
-145.4 854 6

-150.7 889.3
-156.4 933 .6
-162.2 987 .8

-167.0 1043.0
-171.8 1108.2
•177.2 1182.3

181. 8 1268.2
184 7 1365.3
185.0 1485.0
182. 1 1627.9
176.7 1783.3
169.6 1970.4
•162. 5 2187.5

Basis-Spline
10%. 10%

1

- 88.5 1091.5
- 97 4 1042.6
-106 .2 973 8

-144 6 875. 4

-122 .8 867 .2
-130.7 849 .3
-138 .5 861. 5

-146.3 893 7

-153 8 936 .2
-161 .2 988 .8
-168.2 1041.8
-175.0 1105.0

-181 6 1178.4
-187 .8 1262.2
-193.7 1356.3
-199. 5 1470.5
-205. 1 1604.9
-210.6 1749.4
-216 0 1924 0

-221 4 2128. 6
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ß. Comparisons 0/ tbe graduation resu/ts

For easy comparisons, we have plotted the graduated values against
ungraduated values in Figure 1.

We can note the following comparisons:

a. smoothness
We note that the cross-validation regression polynomial and basis spline
methods show the underlying cubics, while the moving weighted average
minimum and supersmoother methods reflect more the local variations.
Of the latter two methods, the minimum fit the end values, i 2,40, rather
too closely, and the supersmoother has a global shape that resembles the first
two methods.

b. weighted residues

The weighted residuals W;(y, — y,)^ for them are plotted in Figure 2, where we

provide a fitted curve for easy comparison. The residuals do not show any
unusual patterns. The curves seem to be smooth and centre around 0.

It may be of interest to note that the four methods use different minimizing
criteria. There is no priori knowledge which method will give the minimum
mean weighted sum of squares of residuals or the minimum cross-validation
score. It is easy to compute the mean weighted sum of squares of residuals,

with y,-'" as the least squares predictor of y, using only 38 data points while

excluding fx,, y,), is not as easy. This can be accomplished, however, by its

other form, see Craren/ IFabba (1979),

To compute the cross-validation score, which is
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Smoothed curves fitted to y, ly — h, at ages x 2 to 40
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Supersmoother fits to tfie weighted residuais — J',i obtained by the four methods
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where a„ are the diagonal elements of /4, a 39 by 39 matrix which transforms

3V-- >f40 to >?40-

For the weighted moving average minimum R? method, we use Uq for a,j. For
the supersmoother method, we approximate % by 1 /J, where J is 7 which
is the average variable span. For the basis-spline method, is automatically
calculated by the package. For the cross validation regression method, we
make use a matrix X which is a 39 by 4 matrix, with rows [1 x, x? x^] for
different i. Then are the diagonal elements of X(AT2f )~'3f, where t means

transpose. We give these calculations in Table 2.

7ab/e 2

The mean weighted sum of squares of residuals MWSSR and cross validation
score CVS

Graduation Methods

Cross- Moving-Weighted- Super- Basis-

Validation Average smoother Spline

MWSSR 1.76817 1.18881 1.65955 1.77805

CVS 2.25892 2.05116 2.25883 2.33892

C. Observation on tire co/i/i'dence inferua/s

We use the bootstrap percentile method to produce the confidence intervals
for the point estimates obtained from the four graduation methods. They are

given in Figure 3.

It is of interest to note that the interval bands follow the curves of the point
estimates; this feature is especially prominent for the moving weighted average
minimum R? method.
There does not seem to be much difference in the interval lengths among the

different methods. The interval lengths are shortest in the age range 8-12,
where the original data points are clustered together. It can also be noted
that most methods produce wide confidence intervals towards the end of the

age range, except for the minimum R^ method which has fabricated extended
values for graduation.
In terms of coverage accuracy, there does not seem to be much difference
either: There are four original data points that none of the confidence intervals



c J?

Bootstrap confidence intervals for true rates (* denotes an ungraduate value)
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covers; each method has also two or three near misses. There is no clear

winner or loser. On the whole, the coverage is between 32/39 and 35 / 39, i.e.

about 82 % and 90 %.

4 Concluding remarks

We have compared four graduation methods on a common data set. Besides

small differences, there does not seem to be vast differences. The conformity
seems to extend to their confidence intervals. One conclusion of this paper may
be that it does not matter much which graduation method one would employ,
provided the graduation method's characteristics are known and the method
is ready to use. For instance, one may argue that although the minimum R:
method tends to reflect more local variations than other methods the method
is very easy to apply.
In a sequel paper we will use the other bootstrap methods to produce
confidence intervals. Recent bootstrap papers have succeeded to compare the

various bootstrap methods in a uniform theoretical framework, discussing
their critical points, confidence interval lengths, coverage accuracy and

dependency on sample sizes. For instance, it has been shown that the
bias corrected accelerated method and bootstrap method have some nice

theoretical properties.

Professor Fung-Yee Chan

Department of Mathematics / Statistics

University of Winnipeg
Winnipeg, Manitoba
Canada R3B 2E9
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Summary

Bootstrap method is applied to produce confidence intervals for the four following graduation
methods: moving-weighted-average minimum-R?, cross validation polynomial regression, super-
smoother and basis-spline. The graduation methods are compared and we observe how the

underlying graduation methods affect the confidence intervals in terms of coverage accuracy and

interval length.

Zusammenfassung

Anhand der Bootstrap-Methode werden Konfidenzintervalle für die folgenden Methoden der

Ausgleichsrechnung konstruiert: Gleitendes gewichtetes Mittel (Minimum R?), polynomiale
Regression mit Cross-Validierung, «Supersmoothers» und «Basis-Splines». Die Ausgleichsmethoden
und die entsprechenden Konfidenzintervalle werden anhand eines praktischen Beispiels verglichen.

Résumé

La méthode «bootstraps» est utilisée pour produire des intervalles de confiance dans le cas

de quatre méthodes de lissage: moyenne mobile (minimum RJ-), régression polynômiale avec

validation en croix, «supersmoothers» et «basis-spline>. Ces méthodes de lissage et les intervalles
de confiance correspondants sont comparés à l'aide d'un exemple pratique.
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