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William S. Jewhll, Berkeley

Credibility Prediction of First and Second Moments in the
Hierarchical Model

1 Introduction

The hierarchical model occupies an important place in Bayesian inference,
since it shows how collateral data from a portfolio (cohort) of exchangeable
risks can be used to improve predictions for any single risk in the portfolio.
Unfortunately, an exact Bayesian formulation is difficult to apply in the

general case, because analytic predictive distributions can only be obtained
for the normal-normal-normal model with fixed variances (L/nd/ey/Smif/i,
1972) and a heteroscedastic generalization (Jevve//, 1987). Thus, an important
step was the development of a one-dimensional credibility (linear least-

squares) approximation to the predictive mean (7ay/or, 1974; Jewe//, 1975 b).
In this paper, we use an idea of Jevve///Se/in/eper (1985) to find simultaneous
approximations to both the first- and second-order predictive moments
in the hierarchical model, by using multi-dimensional credibility theory.
Because the resulting covariance matrix has special structure, the size of
the necessary matrix inversions can be drastically reduced by introducing
prototype forecasting formulae. We validate the method with exact results for
variants of the normal-normal-normal model, then obtain approximate results
for other models, with special attention to limiting behavior.

2 The Hierarchical Model

Consider an indie/dMa/ r/s/c (labelled # 1), characterized by an unknown risk

parameter, 0,, from which ti, i.i.d. observations, Cy {x,,} (r 1,2,...
are available; we wish to predict a/«tare observation, say w, x, of this
risk. Given the mode/ density, p(x,, | 0,), and the prior poromefcr density, p(0(),
finding the /breenxt density, p(ny j £/). is then a simple exercise in Bayes law.
For a variety of simple likelihoods and priors (Jene//, 1974, 1975 a), the

predictive mean is a linear function of the data:

<f{vv, j C/,}=/,(C,) (l -r,)m + z,£^, (2.1)
"i
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with a mixing coefficient, called the em//h///ty /acfor:

'
n, + (e/d)

'

and three required marginal (prior knowledge) moments:

(2.2)

m [xj, j 0,}; c '/ "{.x„ | 0,}: d 7 d {x„ | 0,}. (2.3)

The cm/ihi/dv /oreeasf, is also a robust predictor for the true
<?{w, I £/,} for any model or prior density, in the sense that it is also
the best //near /ea.sf-.st/nares approximatàm (ßü/dmann, 1967).
In many applications, there may be additional data, say [x,,} (/ 2,3,... ,r)
(t 1.2 n,), available from (r— 1) "similar" re/afed risks, characterized by

(///feretif risk parameters, (0,), but with the same model density, p(x j 0). For
example, in insurance we may have a portfolio of risks, presumed similar, «

priori, as determined by some risk classification scheme. But, if the (0,) were
i.i.d., then the co//afera/ data would have no predictive value!
A convenient hypothesis that keeps the risks similar, yet introduces depen-
dency in a natural way, is to assume that 0 [0,,0, 0,.]' is composed of
exedangeab/e random rar/ah/cs, with a joint prior density:

where the common conditional dens/ry, Po(j-), assures that the marginal
densities, p(0,), have identical forms. The interpretation of this assumption
is that the individual risk parameters now depend upon one or more
unknown porf/b//o /ivperparanicfers, </>. Of course, we must be willing to
opine a /zyperprior density, p(/), over the set of all possible portfolios. In
the insurance setting. <p represents simply the variation in similar portfolios
between différent insurance companies. The resulting three-level structure is

called a /nmnr/nca/ mode/.

Our goal is still to predict a future value of risk # 1. but now using the
total co/torf data, fy [x/ (i 1.2— ,r) (f 1,2,... ,n/ Jewell (1975 b)
finds the credibility approximation for the hierarchical predictive mean as the
combination of two credibility-like forecasts:

(2.4)

»'i I ~ /i(®) (1 - - : + -1Ti :

/;('' > H- -o)'» + -Of'o •

(2.5)
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The total cohort data is summarized in r + 1 //near su/ftnent .statistics:

if "" 13^ / /1 z \.v,, yr-.
and r + 1 credibility factors for each risk and for the whole portfolio:

_ E-i
", + (//g)' " Z-/ + (g//i)'

(2.7)

We will sec that: /„CT) is an approximation to the predictive mean at the

portfolio level, j </>} | T] ; m is the overall prior portfolio mean: and

/, g, and /? are new central moments averaged over all possible portfolios.
In 1986, the authors investigated the use of credibility to find the second

moments of (w, | T) of the hierarchical model, using an idea due to
Jevve///Sc/in/eper (1985) (for short, Jc£S); there, a three-dimensional model was
used to find s/zna/fancoas linear approximations to | T}, <f{3cjj+, | Tj,
and I for arbitrary model and prior densities, using the three

corresponding sample statistics. The methodology to carry out this program
was soon clear, but implementation immediately ran into complicated and

messy problems of definition, notation, and computational efficiency. It has

taken the intervening years and several articles (ßnb/tnann/Jeue//, 1987; Jene//.
1987, 1988, 1989) to properly develop and test this approach.
For simplicity, we assume equal data lengths, n, a, for each risk /, and begin
with a brief summary of credibility theory in several dimensions.

3 Summary of Multi-Dimensiona! Credibility Theory

Suppose we have one sample, T [y}, of a random vector, J', with which to
predict another random vector, h>, through a linear form:

<?{*! t; ^/(T) « + z.v. (3.1)

adjusted to give the best least-squares fit. It can be shown (see Jene//, 1989)

that the matrix Z is given by the norma/ system of equations:

Z C /? ; C <Z[y; y} ; T >•: y}. (3.2)
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a is then adjusted to make the forecast unbiased, a <j {h>} — Z d Jr}.'
In credibility prediction, >c and v arc usually of the same dimensionality and

depend upon one or more unknown risk parameters ip so that:

<*'»• I i/'t <?{>' I V'} "»(</') - ^{»*; -V i '/'! 0. (3.3)

If this occurs, we say m> and J- are mean-exe/zangeab/e random cun'ah/c.s.

Defining the marginal moments:

m (S [ m(tp)} ; Ö - 7, { m( ip) ; m(ip )} :

C(tp) =«•{?; J'I W ; ß «?{C(y)}, (3.4)

mean-exchangeability then implies:

<?{»*} <5 {J*} »»: « (M-: J'} o ; % l.v: J'} ß + Z). (3.5)

The linear predictor (3.1) becomes the cred/bz'/iry/orccasf:

/(&) (/-Z)m + Zj, (3.6)

with a square crad/hi/ify mafn'x Z given by:

Z(ß+£>) /) or Z=ö(ß+/>)'. (3.7)

For the hierarchical model, ip (0; (/'), with model and prior densities having
the special form (2.4). We take w> to be a vector of first and second powers
of future observations, and J- as the corresponding first- and second-order
statistics; this will retain mean-exchangeability. After defining w> and j further,
we will find w, ß. and D in terms of underlying moments of .v. and then
consider the problem of inverting (3.7).

4 Predictands and Predictors for the Basic Model

As in J<è.S, the use of moments about the origin provides the easiest way to
develop the parameters (3.5). However, we will need to generalize the notation
somewhat for the hierarchical case.

' We are using the vector and matrix expectation operator. and the vector covariance-matrix
operator. <8{«; v} rf {«)•' } — <?{«}(?{?'}, where « and i> need not have the same dimensions.
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The first- and second-order predictands of interest are:

; » « Si ; "ix: T,rT.„ - (4.1)

where /r ^ i, and s, f, and ir are arbitrary time indices > n + 1, except that
a T ; This is because the special structure of the (stationary) hierarchical
model gives different conditional second-order moments for the same risk
when considering squares of observations (same time period) than when

considering cross-products (different time periods); however, when considering
i////t'renf risks, the expected cross-product of observations is independent of
the particular epochs chosen. This is reflected in the subscript notation, with
double subscripts (ii) used for the square of observations from any time period,
(i x /) denoting the product of observations from a s/ng/e risk from (/(//mm?
time periods, and (/i * /) denoting the product from two i/i//m'nt risks at any
future time period(s). From symmetry, only the s |r(r— 1) cases with /i < /'

need to be considered. Forming the predictands into a vector:

»' [«', I (/] < i) (4.2)

we see that there are R 3r + ,s ir(r + 5) total distinct predictands, with
the special indexing scheme:

/ {(') I («) I (' X /') j (/! * !)} (/l < i)

We shall refer to the four different index types as groups a, /r, c. and rf.

For predictors in y, we assume that n > 2 and use the corresponding "natural"
sample moments:

1
"

1
"

y, - X ~ Z 4 • '4.3 d&ß)
r=l f=l

I /in 2 " w

- ' " nbT^T) ^ ^ " n(n- 1) ^ ^ '

' t=l «=1 1=1 11=1
V Y k Y

y Y

1
n n

V/,., ^ Z Z -Vi« 3/..F (>» ^ ') (4.3 D)
f=l U=1

(One could also use y,,, y? in place of either y,- or y
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Assume r > 2. The number of predictors is also R, so that the same indexing
scheme ./ can be used to define the vector v. Note that, since m- and y have
the same conditional mean vector. /n(0), and involve ,r, from different time
intervals, they are mean-exchangeable random variables. Finally, since the
RHS of (3.7) is /D. we could define it' /n(0) and get the same result. Thus, a

credibility formula can be thought of either as predicting a future value of an
observable, or as providing a linear fit to its unknown mean value.

5 Conditional and Unconditional Moments

The next step is to define the various conditional moments that will appear
in /w(0) and C(0); as in J&S. we will need to find conditional moments up to
order /our from p(.r | 0). which we define as

i^(0,) 0{4|0,}; (fe 1 4) (t=l r) (5.1)

any cross-risk or cross-temporal conditional moments factor into products of
these functions (subscripts on moments refer to powers, not indices). In this
notation, the conditional mean vector of both it> and J is:

w(0) [m,(0,) j m,(0j) I »ff«',)
'

(5-2)

From the assumptions, the (m^(0,)} are exchangeable r.v.s over the risk indices
for each value of k. Given c/>, we form e/ect'/i new conditional moments:

A/,(0

A7
2

</>

A/.(0

A/,(0

A/,,(0

0 l"i|(ö,) : </>! :

(1 [m,((f) i </)[ : A/, I l'/i) ß {mp?j) j 0| :

{"!,((',) 0! : A/,[ 10) 0;»Mff)m, (0) | ®

0 ;»i4((>,) 0! : .V/ji(0) 0 {«3(001», (0,) ; 0

0 {»0(0,) I 0} : A7211 (0) 0{m2(5;)'«i(Oj) I 0

(5.3)

A/,,,(0) 0>r} ((),-) 01 :

A?,,,,(0) 0>j((f)|0j,

where i can be any index. Cross-risk moments conditional on </> factor, i.e.,

<?{m,(0,.)m,(0_,.) (/>} A/f(0) for any i ^ y
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In this new notation, the classical credibility model can be considered as one
in which 0 is fixed, with parameters (2.3) that are:

»! MI (</>) :

e M,(</>)-M,,(<£) >0; (5.4)

</= M,,(</>)->0.
In the second-moment .MX extension, all 11 moments (5.3) are used.

However, in the hierarchical model, the portfolio hyperparameter is an
unknown quantity. So, by taking averages over </> of all possible combinations
of the conditional moments, we finally obtain the 24 uncon<//f/ona/ moments:

(a) First order: A/( 1 ):

(b) Second order: M(2), M(11), M(1 ; 1);

(c) Third order: M(3), M(21), M(lll), M(2; 1), M(11 ; 1), M(1 ; 1 ; 1);

(d) Fourth order: M(4), M(31), M(22), M(211), Af( 1 111). M(3; 1).

M(21; 1), M(lll;1), M(2;2), M(2; 11 M(11 ; 11

M(2; 1 : I), M( 11 ; 1 ; I), A/( 1 ; 1 ; 1 ; I). (5.5)

Here the semicolons in the arguments separate products and powers of the
eleven conditional moments, that is, terms arising from different risks. This
makes the notation easy to read in terms of the basic r.v.s., (5.1), or (5.3); for
example, for any three disr/ncf risk indices /), /, and y :

<A-VViÂy«-}

J ^{m,(fl;>i,(è,)m,(À/)l - c5\AT(^)A/,-(^)} M(2;l; 1) (r a) ]
" 1 <f{mf((i,,)m,(0,.)m,(^.)} <f{M,,(^)Mf(0)} M(11 ; 1 ; 1) (f ^ u)

for «// values of the time indices r and w. So the general hierarchical portfolio
model requires only 24 Ijyp<?r-/iyper/?aramefers, for any r > 2!
For the predictive means (2.5), we need only four of these moments:

m M(l) ; / M(2) — M(ll) > 0 ;

g =M(11)-M(l; 1) > 0 ; /r M(1 ; 1)-M(l)" > 0. (5.6)
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6 Calculation of Model Hyperparameters

We now calculate m, D, and ß in terms of the moments (5.5).

6./ Mean Fecfor

From (5.2). the ß-dimensional mean vector is:

w [M(l) I M(2) I M(11) I M(l; 1)]' (6.1)

where the values are extended as appropriate within each block.

6.2 Pmh'effl/tr/ - Pmh'cfor Coix/nunce Matrix

Since both h> and J' are partitioned by we subdivide the ß x ß
covariance matrices into 16 submatrices, as shown in Figure 1, using subscripts
aa,ah,... ,etc., to refer to the different blocks.
Because every covariance matrix is symmetric, the diagonal blocks are

symmetric, and there are obvious transposes between the rectangular blocks.
For the hierarchical model, it turns out that all square submatrices are
symmetrical; in fact there are many structural simplifications, which wc now
describe. Rather than give specific formulae for each block, wc shall express
our results in terms of the patterns shown in Figure 2.

For the matrix £) 6 {m(0)//i(0) '} -mm', we use (5.2) to find that the values
for each of the nine r x r square submatrices are constant over the pattern
shown in Figure 2 (a), with one value, call it /i, in the unshaded cells, and a

larger value, call it g + h, on the diagonal. In terms of the marginal moments,
we find for the different blocks:

Block g /l

aa M 11 — M 1 ; 1) M( 1 ; 1 -M-(l)
ah, hfl M (21) — M (2: 1) M (2; 1) — M(2)M(1)
aC, Ca M(111) — A/ 11 ; 1) M(ll;l) -M(11)M(1)
fr/? M (22) — M (2; 2) M (2; 2) — M'(2)
he. ch M (211) — M(2; 11 M(2; 11) -M(2)M(11)
cc M 1111 — M 11 ; 11) M(11; ll)-M-(ll)



Figure 7.

Partitioning and indexing of covariance matrices.

(j) (jj) (jxj) (j*k)

(i) aa fl6 flC tzt/

(ü) 6 a 66 6c 6t/

(ixi) Cfl ci cc et/

(h*i) t/a t/6 t/c t/t/

Figure 2.

Special structures of covariance submatrices (r 5, s 10).

(a) r x r submatrices uu, a/?, tie, 6a, 66, 6c, ca, c6, and ee.

(b) r x s submatrices at/, 6t/, and ct/ (and transposes t/a, t/6, and t/e)
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(c) .s x .s submatrix dd.

For the six r x s rectangular submatrices in D there are no diagonals, but now
a pattern of constant values like that shown in Figure 2(b) emerges where a

row index coincides with one of the column indices. Let us call the common
value in each unshaded cell /i, and the common value in each shaded cell by

y + /j. The new central moments are:

Block /î

ad, </a M(11 ; 1) — M(1 ; 1 ; 1 yV/ 1 ; 1 ; 1 — AT 1 ; 1 AT 1

hd, dfr A/ (21; 1 — M (2; I ; 1) AT (2 ; 1 ; 1 — AT (2) AT 1 ; 1

cd, dc M(111 ; 1) — M(11 ; 1 ; 1) AT(11 ; 1 ; 1 — AT(11)AT(1 ; 1

The pattern of common values for the s x s block dd is shown in Figure 2 (c).

As before, we call the unshaded cell values /i and the diagonal values g + /î.

Flowever, we now have shaded cells where one row index coincides with one
of the column indices, with a new common value we will call y + /i. We find:

g^=M(ll;ll)-M(l;l;l;l);
yj,, Af(l 1:1:1) — M(l;l;l;l) ; (6.4)

M(1; 1;1; 1)-M-(1;1).

In summary, there are 21 distinct central moments, g, /i, and y, needed to

compute D. independent of either r or n!

Notice that Ö appears twice in (3.7): once as part of the total covariancc
matrix, and once as the RHS. If a different predictand it' than (4.1) is sought,
then a different RHS must be used in:

Z(ß + £>) =^;»T;.y} /?, (6.5)



311

say, where a non-square ft would induce a similarly-shaped Z. For instance,

suppose wc wish to predict first and second moments at the port/olio level.

and we find that the 4 x s matrix ft consists on/v of the 10 central moments
/?. arranged in a constant-by-blocks pattern. Wc will later interpret this result,
and show how it lits into the general solution to our model.

6.3 Predictor Couariance Matrix

Calculation of ft is simplified because C(0) [J r' | 0| — /n(0)in(O) ' depends
directly upon the individual risk parameters, which are independent, given c/>.

Thus ft 6'{<f{C(0) j (p}} is zero whenever the row indices are distinct from
the column indices, that is, in the unshaded cells of Figure 2. As ft depends

upon n. we set ft -£(/i), where ZT(/i) is a weak function of n, independent of
it except in blocks cc and dd.

For the eight r x r square submatrices, excluding cc, only the diagonal cells

have a non-zero common value, call it /. Then:

Then:

ni M(</>) [M, (</>) I AtMr/d I M„(0) I Mf (0)] ' (6.6)

Block /
«« M (2) — M(11)
«h.h« M (3) — M (21 (6.7)
«c, c« 2 [M (21 — M (111)]

66 M (4) — M (22)

6c, c6 2[M (31) — M (211)]

In block cc, the common value on the diagonal varies with >?:

4[A/(211) — AP(1111)];

r„. 2 [M (22) - 2M (211 + M 1111 )].

(6.8)

A similar result was found previously in J<£S.
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For the six r x s rectangular blocks, non-zero values are obtained only in the
non-shaded cells of Figure 2(b). with a common value wc shall call (,9 (not to
be confused with the portfolio parameter </>). The values by block are:

Block </>

«rf, rftf A/(2; 1) — M(11 ; 1)

ht/, rfh M(3; 1) - M (21 ; 1

erf, rfe 2[M(21 ; 1) — M(111 ; 1)]

(6.9)

Finally, as might be expected, the common diagonal value in £"'"'(«) is also a

weak function of /? :

/d»
2[M(2:11)-M(11;11)] ;

i^=M(2;2)-2M(2;ll)+M(ll;ll).
and the shaded cells in Figure 2(c) have common value:

Vf/,/ M (2 ; 1 ; 1 — M 11 ; 1 ; 1

(6.10)

(6.11)

The variation with » of the transient term in block rfrf is somewhat different
than that in block cc because of the different number of samples involved.
In summary, the calculation of £(n) requires 13 central moments, which, when
combined with those in D and »/. means that 28 values need to be computed
from the 24 moments in (5.5); most of them are, in fact, non-negative. Rather
than finding Z through the inversion of the R x R matrix C, we now develop
methods that will exploit the special structure just found.

7 Diagonal Block Solutions

In our original paper, we showed how to use the special structure in Figure
2 to rederive the basic hierarchical formula (2.5), by predicting it'" from just

using only the diagonal square submatrices ß"" and In the interest of
brevity, we omit discussion of this and similar independent block solutions.
Full details arc available from the author.
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8 The Reduced Prediction Problem

<S'J Some Matrix Resu/ts

We now gloss over several years labor to simplify solutions and take an
intuitive leap that will greatly simplify our problem. Consider the identical
and complete patterns of constant values in the R x R matrices Ä and D.

as formed from Figure 2. Surprisingly, this overall pattern is inrarianf under

mu/t/p/fcat/on and /nrers/on! Further details can be found in Jewe// (1988).

For our problem, this means that:

(a) (Z?+ Dp' will have the same pattern as R and D; and

(b) Z=R(R + Z))
' will also have the same pattern if R does!

Thus, our computational problem reduces to finding the constant values
associated with each pattern, that is, to solving a small linear system whose
dimension does not vary with the number of risks, r!

<S.2 Su/p/eut Statisftcs and Prototype Formulae

Assume for the moment that we are not interested in cross-moment predictions
of or m, (0,,)m, (0;) (h ^ i). Considering the patterns in Z and in the

product Zy, one can show that only eight summary predictands are needed!
For each risk i, we can use the previously defined statistics y,, y„, and y,,,, and,
for the portfolio, we obtain >'q, y^, and Voxo- Two new statistics are needed:

i*0 _ 1 Z '*' '

1 v-
ko*o

5 Z Z >'<•*'
r(r — 1) Z Z

/i < ; h ^ /'

(8.1)

which, to be distinct, now require r > 3. (The asterisks in y,,g and Vq.o do not
have the same meaning as in y,,,,). It follows that any /, or /,, or /^, will be

a linear combination of only eight statistics:

F [v,, y,,,)ix,, v,.o f Vo • ?oo > voxo* TtcoJ^ • (8-2)
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For symmetry, we select the eight-vector of predictands:

m-= |

M, (</;).

Although this new it' has the same prior mean as y, they are not mean-
exchangeable r.v.s., so that the general form (6.8), Z ß(ß + Dp', must be

used in the reduced problem after finding the appropriate 8x8 RHS matrix,
ß.

So the original RxR problem now reduces to one in which: ß. D, the new ß.
and Z will all be 8 x 8 matrices, whatever the value of r; the new /« will be

an 8-vector; and the values of Z and /n will not depend in any way upon the
index i! In other words, the 8x8 version of (3.6) for the reduced formulation
will be a prototype prediction/ormu/a suitable for any individual risk il! This
being the case, let us henceforth, for simplicity, set i 1.

Our task is now to express the new moments, m, ß, D, and ß, in terms of the
central moments found in Section 6. In place of the partitioning of Figure
1, the two groups of four variables in (8.2) (8.3) will be labelled 1 and 0.

respectively, and, within each group, the variables will be labelled by a. 6, e,

and d, corresponding to the original block labels. This leads to the partitioning
of the reduced matrices, ß, D, ß, and Z, shown in Figure 3.

Figure 3.

Block structure for reduced

a
&

c
</

a
5

c

8x8 matrices,

aèct/ûècc?

ii JO

0i 00
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5.5 Reduced Mode/ Wyperparameters

The eight-vector of prior means is similar to (6.1):

m [M(1)M(2)M(1 1)M(1; I) | M(1)M(2)M(11)M(I ; I) (8.4)

The 8x8 total covariance matrix, C ß+ Ö, has only two different forms in

the four blocks of Figure 3. In block //. position no:

C - f + e + /i
aa -/ aa ' o«a ' "a

A/

(8.5)

and similarly for subscripts oh, ac, ha, hh, he, ca, eh, and ec; in position
re, /,.,.(»!) must be used. In the six border locations corresponding to the

rectangular blocks in Figure 1 :

Qi - ~ "Pad + >'ud + ' (8.6)

and similarly for he/, ed, da, dh, and de. (Note that all 15 of these values are
invariant with r). The 16"' position, corresponding to the old s x s block, is

the most complicated, with:

/~H _— :/,/» +
r — 2 "1

+
r - 1

~ <Pdd + )',w

The remaining three blocks are /deuf/ea/, C'° C°' C"", with:

-'lO /^"01
/I / I /-!// /I/I t/ou +aa ' ©aa + '

(8.7)

(8.8)

and similarly for the eight other NW-corner locations in each block, as in
(8.5) above (remember to use /„(") in cell ce). For the six border locations
corresponding to (8.6), we have the form:

— -
1

:<Pad + fad + frfld • (8.9)

noting especially the factor of 2. Finally, for the SE-corner location dd, we
have the complex form:

^00 _ j_" s /d» + 8,
r — 2

(8.10)
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Turning to the RHS matrix, /?" has the simple form:

^ («-ID

and similarly in the eight other NW-corner locations. Then:

KU =?*/ + *«/. <8.12)

and likewise in the five other border cells, und also for
The submatrix /?'" is the only asymmetric 4x4 block, with:

< + ^ (8-13)

and similarly in the eight other NW-corner cells. Then:

^ + ^ (8.14)

and likewise in hd, cd, and the SE corner location dd. However:

<'= ;;7,„t + V. (8-15)

and similarly in the other lower border locations dh and dr. Note the different
coefficients 2 and 1 in (8.14) and (8.15)! These are nof misprints, but reflect
an underlying asymmetry in the reduced predictors and predictands. The
unchanged subscripts on the central moments y and /t remind us that they
are still symmetric w.r.t. their subscripts.
The remaining two blocks, /?"' and /?°°. are easy to describe:

C (8-16)

and similarly for a// 75 remaining cells in both blocks!
Figure 4 summarizes the final block structure of C and /?. Only /?'" is

asymmetric.



Figure 4.

Final block structure in reduced matrices.
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9 Final Simplification of Credibility Prediction

We can further simplify the 8 x 8 formulation by using the special structure
just found. Partitioning Z as in Figure 3. we find:

Z" (/?" - /?'°)(C" - C°V' ;

Z'O /?'0(C)-' _ z" ; (9.1)

Z°'=0; Z°° *°°(C<V,

which reduces the original 8x8 inversion to just two 4x4 inversions!
Furthermore, by partitioning y into [y' | y"] ', and similarly with / [/' | /"] '
and m [aw" [ aw"]' we obtain the final two prototype first- and second-

moment prediction formulae at the individual and collective levels:

/'(£/) (/-z'O-z'V + z'V + z'V,
/"m (/-Z"")Aw" + ^V.

Comparing with the first-moment hierarchical prediction (2.5), we see that
/'(C) is in the correct form, but that /'()?) does not quite have the same
simple form. Further investigation shows that this could only be true if
Z'° (/-Z")Z°° ; in fact, the numerical match is never close unless r is very
large, or one throws away d-type terms that use y,,q and Vq.o in the prediction.
We think (9.2) is simple enough!

10 Cross-Moment Prediction

To forecast cross-moments, say vv,„2 n+i*2n+i """ aaa, (f7, )aaa, (f?-,), we must
expand (8.2) and (8.3) to contain predictors and predictands of both risks # 1



318

and # 2 (as prototypes). The dimension of the problem now jumps from 8 to
13, with, for instance:

and similarly for iE Many of the coefficients in the 13 x 13 covariance matrices
duplicate those already found, but there arc new cross-risk moments to be

found, which we leave to the reader. The final credibility formulae are similar
to (9.2), and require one 9x9 and one 4x4 inversion.

11 General Asymptotic Results

In contrast to (2.5), it is difficult to say much about asymptotic results for
the general hierarchical model as the number of samples, n, gets very large.
Terms in / and <p drop out of C, but otherwise no simplification occurs in the

structure of Z. In other words, neither y, nor yy achieves "full credibility" for
the mean forecasts, /, and in the general case. We shall see below, however,
that this can occur in special cases.
As r, the number of risks, increases, and /?*** approach the same

4x4 matrix of /i coefficients, call it A/. Assuming // ' exists, then:

giving full credibility at the portfolio level for the four statistics in y", a

satisfying result. However, in the examples below, |//| 0. and (11.1) is not
true for all components.

12 Numerical Examples

The first two numerical examples are for models in which all of the first
and second moment forecasts are exact: the third example is similar, but
is known to be analytically intractable, even for the predictive mean. Other
computational experience is then summarized.

(10.1)

J°(®) / :

.fT/) (/-Z'V + Z'V ;

Z" (/?" -//)(C" -//)'
(11.1)
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/2J E.xawp/t' ,4 - Hcwio.sr«/a.s4i'c (Vorma/-/Vorma/-/Vorma/ Mode/

In this model, developed by Lind/ey/Smit/i (1972) in a slightly more general
setting, the densities at all levels are normal with known variances:

In this case, Jmve// 1975 b) showed that the linear mean hierarchical forecasts

(2.5) for /[(£?) and /. /1 are exact, using the same m, /, g, h. However, it
is easy to see that the second moment forecasts are /jomosm/asric, that is,

all updated variances and covariances depend only upon the sampling design

parameters, (a, r), and not upon the sample values in t?. This means that our
second-moment forecasts are basically uninteresting, for example:

and with similar data dependence for /oxO' **nd /o-o< /i«o ^ ^ hybrid,
and depends linearly on _v,/o and f,p
For the calculations, we took m I, / 4, g 0.4, and /; 0.04, reflecting
increasing certainty about higher-level values (which we believe is the usual

case in insurance). This gives time constants of Uq /•„ 10 in the usual

credibility factors z, and Zq. The resulting central moments are shown in Table
I (a). Note the large number of values that are duplicate or stand in constant
ratio.

(À'„ öj) ~ (Ö,-,/) :

(0, | </>)-. I (</>, g) ;

0 (/?!, /l)

(12.1)

/„(S) / + (1 -z,)g + (1 - z„)(l ~ z,)^ + /?(©) ;

/oo(^) =/+« + 0 -Zo)A + /o^(®),
(12.2)



320

Tah/e /.
Central moments for three numerical examples

(a) Example A

f cr
f->

h r
flfl 4.0 0.4 0.04 —
«6 8.0 0.8 0.08 ___ ___ ___
ÛC 8.0 0.8 0.08 —
66 55.04 1.984 0.1632 —
ÔC 23.04 1.984 0.1632 ___ —
cc 23.04 1.984 0.1632 32.0
arf 0.08 4.0 0.4
id 0.1632 8.32 0.832
erf 0.1632 8.32 0.832
dd 11.52 0.992 0.1632 4.16 0.416 16.0

(b) Example B

f S h V 7 T

ÔÛ 4.0 0.4 0.04
a6 8.0 0.8 0.08
ÛC 8.0 0.8 0.08
66 74.56 2.176 10.0216 _ __
ÔC 26.56 2.176 1.1416
cc 26.56 2.176 0.2616 48.0
ad 0.08 4.0 0.4
6d 0.2536 8.48 0.848
erf 0.1736 8.48 0.848
dd 13.28 1.088 0.1656 4.24 0.424 24.0

(c) Example C

4.0 0.4 0.04
8.0 0.8 0.08 ___ --- ---

ÖC 8.0 0.8 0.08
66 55.04 2.144 0.2432
6c 23.04 2.144 0.2432
cc 23.04 2.144 0.2432 32.0
flrf 0.08 4.0 0.4
6d 0.1632 8.32 0.832
erf 0.1632 8.32 0.8.32
dd 11.52 1.072 0.1632 4.16 0.416 16.0

Table II shows the credibility matrix, Z, for selected values of a and For
instance, with /? 10. r 5, rows # 1 and # 5 show that /, and /„ are just
(2.5), with r, 0.5 and z„ 0.2.
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7aW<? //.
Numerical values of Z for example A

0.5 0.0 0.0 0.0 0.1 0.0 0.0 0.0
0.4 0.027 0.243 0.08 0.08 0.0002 0.001S 0.008
0.4 0.027 0.243 0.08 0.08 0.0002 0.0018 0.008
0.4 0.002 0.018 0.08 0.16 0.0004 0.0036 0.016

0 0 0 0 0.2 0.0 0.0 0.0
0 0 0.32 0.0008 0.0072 0.032
0 n 10 r 5 0 0.32 0.0008 0.0072 0.032
0 0 0.32 0.0008 0.0072 0.032

0.8333 0.0 0.0 0.0 0.0490 0.0 0.0 0.0
0.1961 0.0142 0.6966 0.0654 0.0115 0.0000 0.0005 0.0019
0.1961 0.0142 0.6966 0.0654 0.0115 0.0000 0.0005 0.0019
0.5882 0.0010 0.0480 0.1961 0.0692 0.0001 0.0028 0.0115

0 0 0 0 0.2941 0.0 0.0 0.0
0 0 0.4152 0.0004 0.0170 0.0692
0 n 50 r 5 0 0.4152 0.0004 0.0170 0.0692
0 0 0.4152 0.0004 0.0170 0.0692

I

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.C667 0.0 0.0667 0/2667 0.0 0.0 0.0 0.0

0 0 0 0 0.3333 0.0 0.0 0.0
0 0 0.4444 0.0 0.0222 0.0889
0 n -» oo r 5 0 0.4444 0.0 0.0222 0.0889
0 0 0.4444 0.0 0.0222 0.0889

i

0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0
0.0 0.025 0.225 0.5 0.0 0.0 0.0 0.25
0.0 0.025 0.225 0.5 0.0 0.0 0.0 0.25
0.0 0.0 0. 0.5 0.0 0.0 0.0 0.5

0 0 0 0 1.0 0.0 0.0 0.0
0 0 0.0 0.0 0.0 1.0
0 n 10 r -» oo 0 0.0 0.0 0.0 1.0
0 0 0.0 0.0 0.0 1.0

1

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0 0 0 0 1.0 0.0 0.0 0.0
0 0 0.0 0.0 0.0 1.0
0 11 -t CO r -» oo 0 0.0 0.0 0.0 1.0
0 0 0.0 0.0 0.0 1.0

1
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Now, it is always true that:

VÖ

"1"
y« +

M — 1

M n

r
r

>'oo +
"r-

r

"r >f +
> -1

r r

•V /x i '

V'o.n ^ and

T«o •

(12.3)

So, if /[ and /q obey (2.5) exactly, we can then expand //J(V'). and
>'i/o(â») solely in terms of the eight statistics in >'! This leads to the duplicate
coefficients in the remaining rows of Z, as explained above.

As n —* co, the exact nature of the forecasts leads to /, 1 • y,. as expected,
and to Zq (r/(r + *o))' the other limits, such as y,,, can be

explained in terms of the limiting behavior described in J&S. As r
limiting Z is not /, because |//| =0.

co, the

72.2 Example li - Jewell's J/eteroxrefiflsfir Morle/

We now consider ways to make model A heteroscedastic, that is, to have

predictive (co-)variances that depend upon the data values; in the normal-
normal-normal model, this clearly requires that one or more of the basic
variances in (12.1) be considered as unknown, « priori. Jewell (1987) showed
that if the densities in (12.1) are taken as eonrlifional on (/,g,/i), with p(/,g,/î)
a given joint prior, then the key to retaining analytic solvability was to /z.\

the credibility factors r, and Zq by linking all three variances through the
relations:

/ "og "o'V>. (12.4)

thus fixing the time constants and r„. The essential work is then to find
c?{/ I £?}, etc. now needed in the generalized forecasts like (12.2).

If we choose a (a, /I) prior for (/)"', we obtain credibility-type
formulae for the updated (co-)variance(s)! The main result is:

<?{/ ,S>} (1 - + z,fi(0) ;

/?

<?{/}
1 (12.5)

+ 2(a — 1)
'
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with a linked-variance statistic that, in its most pleasing form, can be written:

B(C/) (1 - -o)( 1 - -1)(.V"oo ~

+ 1 - - z, + -(1 -z) L>'oo 3'ox(>]
(12.6)

+ (' "|)( '
J.

boxO J'O-O]

Other forms are given in Jewe// (1987). Note that the "volume" of effective
data in the learning-curve z, is (nr), and that, with fixed <#{/}, the effective

time constant, 2(a — 1), is larger, the more certain we are about /, a prion'.
The forecasts of (12.2) are easily generalized to this model by setting g //«(,
and /i //'Vo and using (12.5) to uncondition on /. So the only change in

/,[, /|xi, and /|,Q will be in the coefficients from
For the numerical calculations, we have set m 1, <f{/} 4.0, and

«g r„ 10, so that the mean values of the variances are comparable
with example A. Heteroscedasity is introduced by setting /• '{/} 8.0, giving
T'{g} 0.08 and 7'[/;} 0.0008. and similarly for the covariances. The
resulting central moments are shown in Table 1 (b). The credibility matrices
in Table III, calculated for the same values of n and r as Table II, show the

same results for /, and /q, as well as the same coefficients in the rest of Z", as

expected. However, negative and/or larger-than-unity coefficients now appear
because of the complexity of the the statistic B(,Z). Of particular interest is

the fact that, as « —» co, /,, —> y,, + (y,,,, —

j//j 0 for this model, too, but here, as r
second-moment statistics from _y" in their exact, linked predictions.

J'oxo)' with /|x, y,xo as before,

x, /oq and /qxq both use all the

(2.3 Exmnp/e C - ßerger's //eteroscedasfic Mode/

Berger (1985: Section 4.6) analyzes a normal-normal-normal hierarchical
model that, in our notation, has / and /; fixed, but with g having an

arbitrary prior. He essentially develops (2.5) and the covariance form of
(12.2). conditional on g, gives the likelihood p(t? j g), and then proposes using
several one-dimensional numerical integrations to uncondition on g. Because

of the complexity of p(S? j g), and the way in which g enters z,(g) and Zg(g),

we see that not even the predictive means can be linear functions of our
statistics. Nevertheless, because Berger's model is "close" to those analyzed
above, we feel intuitively that the credibility approximation should be "good
enough" for most purposes.
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Tafo/e ///.
Numerical values of Z for example B

0.5 0.0 0.0 0.0 0.1 0.0 0.0 0.0
0.4 0.027 0.243 0.08 "0.6714 0.8906 -0.4378 0.0671
0.4 0.027 0.243 0.08 0.0429 0.0442 "0.0199 0.0043
0.4 0.002 0.018 0.08 0.1571 0.0038 0.0019 0.0157

0 0 0 0 0.2 0.0 0.0 0.0
0 0 -0.4714 0.9386 -0.4558 -0.0471
0 n 10 r 5 0 0.2429 0.0922 0.0379 0.0243
0 0 0.3143 0.0076 0.0039 0.0314

0.8333 0.0 0.0 0.0 0.0490 0.0 0.0 0.0
0.1961 0.0142 0.6966 0.0654 -0.2221 0.9763 -0.8200 "0.0370
0.1961 0.0142 0.6966 0.0654 0.0077 0.0162 -0.0131 0.0013
0.5882 0.0010 0.0480 0.1961 0.0689 0.0012 0.0019 0.0115

0 0 0 0 0.2941 0.0 0.0 0.0
0 0 0.1609 1.0632 "0.8763 0.0268
0 n 50 r 5 0 0.3906 0.1031 "0.0694 0.0651
0 0 0.4136 0.0071 0.0113 0.0689

1

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 1.0 -1.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.6667 0.0 0.0667 0.2667 0.0 0.0 0.0 0.0

0 0 0 0 0.3333 0.0 0.0 0.0
0 0 0.4444 1.1067 "1.0844 0.0889
0 n -» oo r 5 0 0.4444 0.1067 "0.0844 0.0889
0 0 0.4444 0.0067 0.0156 0.0889

0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0
0.0 0.025 0.225 0.5 0.0 0.9975 "0.4725 "0.275
0.0 0.025 0.225 0.5 0.0 0.0475 "0.0225 0.225
0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5

0 0 0 0 1.0 0.0 0.0 0.0
0 0 0.0 1.045 "0.495 0.45
0 n 10 r - oo 0 0.0 0.095 "0.045 0.95
0 0 0.0 0.0 0.0 1.0

1

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 1.0 "1.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0 0 0 0 1.0 0.0 0.0 0.0
0 0 0.0 1.1 "1.1 1.0
0 n -> oo r -> oo 0 0.0 0.1 "0.1 1.0
0 0 0.0 0.0 0.0 1.0

1
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7aWt> / T.

Numerical values of Z for example C

0.5 0.0 0.0 0.0 0.1 0.0 0.0 0.0
0.2727 0.0346 0.3109 0.0485 -0.0793 0.0137 0.1232 -0.0276
0.2727 0.0346 0.3109 0.0485 -0.0793 0.0137 0.1232 -0.0276
0.4091 0.0018 0.0164 0.0727 0.1752 -o.oooi -0.0005 0.0175

0 0 0 0 0.2 0.0 0.0 0.0
0 0 0.0340 0.0212 0.1906 "0.0288
0 n 10 r 5 0 0.0.340 0.0212 0.1906 "0.0288
0 0 0.3281 0.0006 0.0053 0.0301

1

0.8333 0.0 0.0 0.0 0.0490 0.0 0.0 0.0
0.0919 0.0156 0.7633 0.0227 "0.0513 0.0017 0.0815 "0.0227
0.0919 0.0156 0.7633 0.0227 "0.0513 0.0017 0.0815 "0.0227
0.6365 0.0008 0.0386 0.1575 0.1180 "0.0002 "0.0113 0.0257

0 0 0 0 0.2941 0.0 0.0 0.0
0 0 "0.0165 0.0076 0.3724 "0.0777
0 ii 50 r 5 0 "0.0165 0.0076 0.3724 "0.0777
0 0 0.4476 0.0002 0.0091 0.0610

1

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.75 0.0 0.05 0.20 0.0661 0.0 "0.0190 0.0276

0 0 0 0 0.3333 0.0 0.0 0.0
0 0 "0.0230 0.0 0.4414 "0.0966
0 n -> oo r 5 0 "0.0230 0.0 0.4414 "0.0966
0 0 0.4943 0.0 0.0103 0.0759

0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0
0.0 0.0333 0.3 0. .3333 0.0 0.0667 0.6 "0.3333
0.0 0.0333 0.3 0.3333 0.0 0.0667 0.6 "0.3333
0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5

0 0 0 0 1.0 0.0 0.0 0.0
0 0 0.0 0.1 0.9 0.0
0 n 10 r -» oo 0 0.0 0.1 0.9 0.0
0 0 0.0 0.0 0.0 1.0

1

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 1.0 "1.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0 0 0 0 1.0 0.0 0.0 0.0
0 0 0.0 1.0 0.0 0.0
0 n -> oo r -» oo 0 0.0 0.0 1.0 0.0
0 0 0.0 0.0 0.0 1.0

1
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To maintain similarity, our numerical trials set m 1, / 4, and /i 0.04,

as in example A, and y 'JgJ- 0.08, as in example B; all covariances and the
other variances are zero. Table I (c) shows that the central moments are closer
to those of A than those of B; in fact, only seven moments in the g and /i

columns differ from those of A!
Table IV shows the numerical results for Z, for the same values of « and /•

used previously. The first surprise is that the approximafion.s /,(Z) and /off/)
for (f{0 I '/j and <?{</> | respectively, are still the simple formulae of
(2.5)! (discussion below). On the other hand, the other coefficients of Z" are
different than those of either example A or B. The other coefficients for y"
have negative signs in different locations than those of example B. and are
generally smaller in magnitude, closer to those of A.

Asymptotically, there are few surprises, although, as r —» x, both /,, and

/ix,have the fixed term 0.9[M(2) —M(ll)], so that neither estimate is ever
fully credible. On the other hand, if both n and r are large, Z —» /, probably
because of the underlying non-linearity of the exact predictions.
Overall, the fact the credibility coefficients of example C are "between" those
of A and B, for the most part, gives us additional confidence that they are
robust approximations to the true predictive formulae.

/ .2.4 Other Computational Experience

Is the behavior of examples A, B, and C typical of general normal-normal-
normal models with arbitrary priors, p (/. g, /?)? (Note that credibility
approximations only use the means and covariances of these r.v.s). Based

upon computational experience with a variety of cases, we can say empirically
that /j always uses only y, and yy, and that /q only depends upon y„. A proof
of this approximation simplicity seems difficult, but it must be related to the

assumption of normality at all levels.

On the other hand, it is easy to construct normal models with |//| =4 0, so that,
as r — x, /" y" and /' (/—Z")y° + Z"y'. We leave the exact conditions
for the reader to discover, but if, for instance: <?{/]} 0; or y '!,/'] 0; or
'/ {gj 0; or all correlations among (/, g, /;) are unity, as in example B, then

//j 0 and we obtain different limiting results. But setting only '/ "{gj 0 or
making (/, g, h) independent will lead to full credibility at the portfolio level
as the number of risks becomes very large.
To obtain approximation formulae where /, depends upon more than y, and

y„. one must turn to non-normal model densities. From J&S we know that the
non-hierarchical Gamma-Exponential gives exact forecasts for /, in terms of
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y,, and /,, and /,. in terms of y,, and Now let us make the scale

parameter of the Gamma a random variable, with its own Gamma hypcrprior
density (thus giving a Gamma-Gamma-Exponential hierarchical model). The
exact predictive formulae are already analytically intractable, so our /, and /„
can only be linear approximations. Yet we have found empirically that /, still
depends only upon y,, but now upon a// of y" ; the latter is due solely to the

complexity of /y, so we get a formula for /, like the first line of (2.5)! Now,
as /I —> x. the 3 x 3 NW corner of Z" behaves like the Gamma-Exponential
example in JcSS. which is some consolation. //"' always exists in this model
(in non-degenerate cases), so that, as r —> x, we have full credibility at the

portfolio level.
The Gamma-Poisson is another (non-hierarchical) model that has exact first-
and second-moment credibility forecasts. Creating a hierarchical model by
again making the Gamma scale parameter into a Gamma r.v., we obtain
different results than those described above. Now the approximation /,
depends upon n// components of y' and y" Moreover, we obtain the surprising
empirical result that, as n —> x, the 3x3 NW corner of Z" now approaches /,
rather than the corresponding limit in J<£S! //"' always exists in this model,
SO z - / as the number of risks increases without limit, although the rate
of convergence is very slow, compared with previous models. There seems to
be much more variability in Poisson model prediction.
It is dangerous to extrapolate this experience to other models, since each

case requires developing the appropriate 24 analytic moments to look for
simplifications. However, the pathologies observed above seem to be due to
the fact that densities at all three levels are members of the quadratic variance

family of Morris and are natural conjugate between levels. With different
densities, one should obtain "regular" asymptotic behavior. The reader is

cautioned against choosing the 24 moments at random for experimental
trials, as the moments must obey many Schwarzian inequalities based upon
applying W[y"} > [<?{y~}]~ > at all levels; assuming positive random
variables and/or special densities adds further constraints.
Special thanks are due to M. Lin, who assisted in the complicated details of
program development, computation, and validation for these examples.

13 Conclusion

Wc have seen that the hierarchical credibility model reduces from a large
least-squares formulation to a pair of 4 x 4 problems, one of which finds
the portfolio-level /®(Y), and the other the individual-level /'(£?). The
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methodology also agrees numerically with those simple hierarchical models
for which analytic forms are known, and gives reasonable approximations for
"nearby" models for which exact results are not available.
The use of the common exponential-family modeling densities greatly
simplifies parameter estimation, but raises interesting questions about the

asymptotic behavior of these formulae when /; and/or r arc large, since "full
credibility", using the natural estimators, may not be attained. And we have

not at all considered whether a subset of our statistics might give almost as

good approximations. Thus, there remains a great deal of practical exploration
of the methodology, which we must leave to the future.

14 Dedication

Some scientific ideas are like complex wines - they need substantial blending
and ageing before they can be properly appreciated. So it is with the topic of
this paper.
The basic ideas and the formulae of Section 6 were developed during a visit of
HB to Berkeley in Spring, 1986. However, extensive "cellaring" was necessary
to simplify notation, to understand and exploit the special structure of the
coefficients, to find a heteroscedastic test model, and, above all, to develop
and lest the many computer programs used for the numerical calculations.
On this special occasion of his sixtieth birthday, the cellarmastcr would like
to dedicate the long-overdue bottling of this work to Hans Bühlmann, with
the hope that he will find it to his taste.

William S. Jewell
Engineering Systems Research Center
University of California, Berkeley
Berkeley, Ca 94720
USA
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Summary

Multidimensional credibility provides simultaneous linear least-squares approximations to the
first and second predictive moments of the hierarchical model, using natural first- and second-
order statistics formed from all risks in the portfolio. This gives a very large, special-structure
covariance matrix, which would be very difficult to invert for a typical portfolio. Matrix arguments
show that the formulation can be reduced to small, fixed-dimension matrices, giving prototypical
credibility formulae for use with any number of risks. Numerical examples are given for the

normal-normal-normal model, for which exact Bayesian results can be obtained in some cases,

and for other models.

Zusammenfassung

Mehrdimensionale Kredibilitätstheorie liefert lineare Approximationen (mittels der Methode
der kleinsten Quadrate) gleichzeitig für das erste und das zweite Moment des hierarchischen
Modells, wobei natürliche Statistiken erster und zweiter Ordnung - basierend auf allen Risiken
eines Portefeuilles - benutzt werden. Dies führt zu einer sehr grossen, speziell strukturierten
Kovarianzmatrix, deren Invertierung sehr schwierig sein dürfte. Mit Hilfe der Matrizenrechnung
wird der Formalismus reduziert auf kleine Matrizen fester Dimension. Numerische Beispiele
werden erläutert für das "normal-normal-normal"-Modell, für welches in gewissen Fällen exakte

Bayesianische Resultate hergeleitet werden können, sowie auch für andere Modelle.

Résumé

La crédibilité multidimensionnelle livre des approximations par moindre carrés simultanées et
linéaires pour les premier et second moments a priori du modèle hiérarchique, et cela sur la

base des statistiques naturelles de premier et de second ordres formées par l'ensemble des risques
du portefeuille. Ce fait fournil une matrice de covariance très étendue et de structure spéciale,

qu'il serait très difficile d'inverser dans le cas d'un portefeuille typique. Une étude montre que la

formulation peut être réduite au cas de matrices de petite taille et de dimension fixe comportant
des formules de crédibilité prototypiques pour un usage en présence d'un nombre quelconque de

risques. Des exemples numériques suivent dans le cas du modèle normal-normal-normal, pour
lequel il est possible d'obtenir des résultats bayesiens exacts dans quelques cas de figure, ainsi

qu'avec d'autres modèles.
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