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Markus Buchwalder Eric Chevallier and

Claudia Klüppelberg, Zürich

Approximation methods for the total claimsize distribution

- an algorithmic and graphical presentation

1. Introduction

Traditionally, the distribution of the total claims in a fixed time period (e.g. in

one year) has been a central topic in risk theory. Since computers have entered

the field, the interest in many traditional approximation methods has faded away
whereas more computerintensive methods like recursions, fast Fourier transform
and Monte Carlo methods have gained importance. This change of interest retains

the field important for researchers. It manifests in the many articles published on

this subject recently in insurance mathematics journals.
Most standard textbooks on risk theory contain sections on approximation methods;

we refer e.g. to ßearri et al. (1984), Ger/zer (1979), /fe'/mann (1988), //z/zp and

Mzc/ze/ (1990). An earlier review paper is A7zpper (1971) where also numerical

examples can be found. In a sense the present paper can be considered as an

update of Küpper's work adjusted to nowadays computer technique.
We consider the classical risk model, where the whole portfolio of a certain

insurance business represents the source of risk. The number of claims A in one

period is supposed to be Poisson distributed with parameter A and the claimsizes

(-Xfc)fcgN are a sequence of iid random variables having common distribution

function E with E(0) 0, mean value /v, /i^ for fc > 2, and variance

<r-. Furthermore, /V and (AG)fceN are independent. Then 5 ^u=i A*, represents
the accumulated claims in one period and has distribution function

\n
Gr(ar) V -E"*(x), z > 0,' n!

n=0

where E* denotes the n-fold convolution of E. Notice that E"* is explicitly
calculable only for degenerate (deterministic) or exponential claimsizes. In all

other cases numerical approximations for G are required, where the convolutions

and the infinite sum cause problems.
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If not stated otherwise, for ease of notation, we shall always approximate the

distribution function G of the density g of the standardized random variable

5 / 1

yX(rr- + /N)

The approximation of G is then obtained in the obvious way.
In section 2 we briefly review the different approximation methods and in section

3 we present the graphics together with a discussion.

2. The approximation methods

In the approximations of this section the moments of 5* determine the constants

in certain expansions. We use the following notation

mfc £7[S*], AGN

7»*.. /?[£'*'], A; 6 N

In the Poisson case we have in particular

77i;l A/i

varS A(cG + /G) A/io

7-2 »M - 3 //4 / (A//.2

Furthermore, the normal distribution its derivatives <?G), £ g the normal

density 0 and its derivatives A: G N, play a central role. Obviously,
0(0 <£G+i0 A; G No, holds. Moreover, we need the Hermite polynomials

2 rG 2,
FA,,(.r) f/G''(.r)/ô(.r) G — e~* ^ A G N

There exist various recursive formulas for AG, we shall use the following

-ff"fc+i -•'/Afc(.r) + FAfc(x), A G N

Ho 1
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2.7 77ze norma/ approxz'marion and re/ated met/rods

2.1.1 The normal approximation

The most obvious approximation is to use the CLT which gives for large A

GO) « <7>(.r)

where denotes the standard normal distribution. In practical applications,
however, A is often not large enough and the accuracy of this approximation
is not satisfactory if the skewness of the claimsize distribution is large.

2.1.2 The Edgeworth approximation

The Edgeworth approximation can be considered as a refinement of the normal

approximation which also takes higher moments into account. The expansion is

obtained by means of the moment generating function

OO

f(t) I r'GZG(.r)

0

which exists for all i < G < oo. For those f we consider the Taylor series

OO

log.g(f) (2)

fc=0

Due to the standardization we have cto on 0
1 d* üwhere«, := g ^ sM

t=0
and «2 a- Again by a Taylor expansion we obtain

,</(7) exp exp ^ X exp ^
• fc=:s ' fc=('

The following result enables us to invert the terms back.

Proposition 1. Tor a// fc G No we /rave

OO

/V-72 y e'"(-l)*iïk(u)0(u)du
— OO

w/tere (/> denotes t/re standard norma/ density-
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Prop/: The result obviously holds for & 0. Then we use induction:

OO

— OO

OO

"1 /*

e*"(-l)*+V^(u)
'

+' / f'"( -l)V^(u)du
J -OO 7

— OO

0 + /''+',1~/-

We insert this in (3) and obtain (if it is possible to interchange sum and integral)

ff (A) X flfc y e*"'( —l)k</>N) (rt)firt y
r-''" X «/,(-»)(/».

fc=0

From this we obtain

fc=0

s(s) X>(-l)VX*) and G(.r) £ 1 )^>(.r) 1)

A: —0 /c—0

The following result gives the exact values for a^, fc G No-

Proposition 2.

OA: r[ X o /or A; G No
'

.;=:()
3-^ /

Prop/': From equation (3) we obtain by Taylor expansion

OO / OO I h \ / OO h /1 \ \x^ ^^ (x^w)(x^^(0))
fc=0 A —o

' ' A=0

°° / A:

E):,E,
fc=0

'
.7=0 0 u

^(0)5 '"(»)

Identification of the terms of the same order gives the result.



191

TakingJhe first n terms in (4) gives the Edgeworth approximation of order n for

p and G; i.e. for c? we obtain

.(/(•') ~ 7(.r) - ^TO30^'(.T)

+ ~ + y^(»7 ~

+ - 15/Tm + 30)<6<"'(.r)

+ /?(•')

Alternatively, Gerèer (1979) and ßearJ et al. (1984) approximate in (3)

.</(') ~ exp exp j cxp ^7^ X!

Truncation of the infinite series on the rhs to Xlfc=3 ®fc^' yields to different
coefficients giving the approximation

ff(.c) ~ - ^7i^^(-'')

+ "(.r) + -^7^'(A) ^
+ G(-'')

This expansion is traditionally used for the normal power approximation below.

The first line of approximation contains terms up to the order A~~^, the second

line up to A~\ and f?(:r) up to A"^.
Notice that for heavy-tailed distributions like the Pareto or loggamma the Edge-

worth approximation is not possible. Also, in general the series in (4) are diver-

gent and hence the approximation does not necessarily improve by taking terms

of higher order. Nevertheless, taking a suitable number of terms, the Edgeworth

approximation gives acceptable results in the neighbourhood of the mean as we

shall see in section 3.
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2.1.3 The normal power approximation

The basic idea of this approximation is to find a function p such that

S p(W)

where TV is a standard normal random variable. Then approximate

G(x) « <2>(p^(x)) (6)

where p*~ is the inverse (or locally inverse) function of p. A suitable transformation
in polynomial form can be obtained using the Edgeworth expansion, e.g. of order
6. We take Gerber's version (5) which yields

G(x) « e(x) := <?(.r) - #<>(.»•) + V) + ~7i

The problem reduces then to find a function p such that

e(p(x)) <2>(.t) (7)

Set p(x) :r + Ax, then (7) can be rewritten as

0 7^(x) — e(x + Ax) =: g(Ax)

and we have to find the root Ax. We apply Newton's method of second order

with starting value 0. The one-step approximation is then

a - gW lg"(0)fg(0)Y
g'(0) 2ç'(0)UW (8)

where

7(0) ^;7i7^0(./) - -L^2<p(4)(3,.) _ i_^2<p(6)(3.)

t/(0) -7>'(x) + 7>^'(x) - 7^72^ fa) - t^7i^fa)

r/'(0) -7>"(x) + ^gifafax) - _Lp<fa®'fa) ~
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Now we use the fact that <£"•) 0 ///,._ic6 holds for all /c G N and

approximate the two terms of the righthand side of (8) as follows:

</((]) (b ~ ') + TI72 (•*'* - 3.r) + ~ + 15.x)

t/(0) l + g7i(x^-3x)
(9)

***>
At first sight the approximations above seem rather arbitrary. They are, however,
motivated by the fact that they are asymptotically exact up to the order 0(A~^)
for the Poisson claim number A" as the parameter A —> oo and

Ojanta&armn (1969)].
We expand (1 + g7i(aG — 3x))~' of (9) in a Taylor series and, taking only the

terms up to order yf into account, we obtain

9(0)

<?'(0) Qti(^ - 1) + - 0-'') + y^7r(-9' - 10z* + 15a:)

X - jv7i- 3a:) + (.<••' - 3a')"

~ ^71 - 1) + ^72" 3x) + ^7)(-.r' - 2:G + 9.r)

This together with (10) gives by (8)

p(ar) a' f Aa;

~ a: + ^71 (a'" - 1) + ^72(a;^ - 3x) - ~7?(2ar^ - 5;c) (11)

If we use only the first two terms in (11) we obtain

p (a') « y9/7f + fia:/7.1 + 1 - 8/71

and, inserting this in (6), we obtain the normal power approximation of second

order

G(;c) « <^^9/7? + 0a'/7l + 1 - 3/71

For the normal power approximation of the third order equation (11) has to be

inverted; e.g. by Cardano's formula.
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2.2 Approxi'mariow.s' «sing orf/zogona/ pofynomiaZi

2.2.1 The Hilbert space setting

Suppose / C M is an interval and w a positive continuous (weight) function.

Furthermore, denote by Ljy the Hilbert space of all Z/-integrable functions with

respect to the measure w/x/cLt. Then for /, ,g G we define the scalar product

(/ .9) := y /('•).9(.r)w(.r)<7.r
7

and the induced norm

11/11 y/0T7>

Certain orthogonal polynomials (TI/jgN constitute a basis of and every

/ 6 has the representation

OO

/O) ^ A,/7,.(x)w(x)
2=0

where

/I, I /J,(x)/(x)d.X, /£No
7

Hence the approximation of order n for / G is given by

n

/(-'') ~ /»(•') ^9l,;77,(.r) w(x)
2=0

Different intervals / and different weight functions «; yield different approxima-
tions. In our case / is the density of a random variable, say 21, and hence

Since i7,; is a polynomial of degree z this implies that for an approximation of
order n the n-th moment of Z has to be finite. Furthermore, for / we take the

support of 21 and for the weight function w a probability density.
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2.2.2 The Gamma approximation of Bowers

We approximate the density g of the standardized random variable

TT s
var o

which is in the Poisson case equal to 5' ~f>'. 5 is a non-negative random

variable and we choose 7 R+. Furthermore, we choose w(x) T(x; 1, 6)

> q, ^nd 7 üb'/var 5'. Then the Laguerre polynomials

77,(.r) (-l)'.r'--''G'-^-(.r'+''-V: "*)
ar'

-r(^i)g(;)(-D-V^L_. ,cn„

constitute a basis of ü/,. Due to the normalization we obtain

To 1) Ta /fj 0

and

6^6 + 3)^"^ ^)(& + l)<0

where /to û[À]. In the Poisson case /to //'^". Consequently, for

n 0, 1, 2 we obtain a simple Gamma approximation, i.e.

./(•'•) « w(.T) r > 0

and for n 3 we obtain

//(.x) « w(x) + T.3-Ö3(x)w(x)

- ' ->-'c + x(M3 — (7 + 2)(7 + 1)7)
7/7) G

)'' 3.r
+ W7S ' TT - TT77T C

7/7 + 3) 7/7 + 2) r(7+l) .7(7)
5—1
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2.2.3 The Gram-Charlier approximation

We approximate the density <7 of the standardized random variable

g 5
\/va.r 5

which is in the Poisson case given in (1). The support of 5 is R, consequently we
take I R. Furthermore, we take u>(x) </(x) the standardnormal density. Then
the Hermite polynomials

17, (x) 77, (x)

as defined in the beginning of this section constitute a basis of L/,. Due to the

normalization we obtain

A) 1, Ai R2 0, - 7t/6, A4 72/24.

Consequently, for n 0, 1, 2 we obtain a simple normal approximation; i.e.

p(x) ss w(x) </(•<)

and for n 3 we obtain

</(x) « w(x) + A3iT3(x)w(x)

</(•'') - ^7i </>''" OA

and for n 4

<jr(x) « u>(x) + A37T3(x)m(x) + A4iÏ4(x)u>(x)

Notice that for n < 4 the Gram-Charlier approximation is exactly the Edgeworth
approximation of the corresponding order. Only higher order approximations
differ.
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2.2.4 The Esscher approximation

Most of the preceding approximations are sufficiently precise around the mean

but perform poorly in the tails. Exponential tilting shifts the mean to an arbitrary
large x-value and hence improves the approximation in the tail considerably. Then

the density or distribution function is estimated for this value x. We describe the

method in detail: For the random variable 5 with distribution function G define

for /i G I such that /? < oo the exponentially tilted random variable 5"/,, with
distribution function G/,, by

G/,, is called the Ztsstc/zer trara/orm o/G. Then G ft, has moment generating function

i.e. .<//, is essentially a translation of g.

Proposition 3. [Gerber (1979), Section 4.7J

(a) Suppose 5 is compound Poisson witb parameter A and c/azmsz'ze distribution

F, then a/so 5ft, is compound Poisson wit/z parameter A/(b) and c/aimsize

distribution Fft.

(b) Pbe /unction b F [5ft] is increasing.

Prop/t (a) The moment generating function of 5 is

(12)

0

,?/i CO .CC' + /')/d(/') (111)

g(f) cxp(A(,/'(/) - 1)

and using (13) one obtains

p/,,(t) exp(A(/(d + b) - 1) - A(/(f) - 1))

exp(A/(t)[/(/ + />)//(0 - 1])

(b) Observe that

F[5ft] =p,;(0)=p'(b)/p(b)
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and hence

jV'WffO) - j/r(/<)

?ft (") - (?/i(0))^ varS',, >9

Remark. Denote by xy := sup{x; G(x) < 1} and by /iq := sup{/i; g(/i) < oo}.
Then in all cases we consider we have

lira £5), .To (14)

For a precise mathematical result and an example where (14) does not hold see

Petrov (1965).

Then for a given x G supp 5 determine Gt such that

£[S'„] ;r

and apply the Edgeworth approximation to G ft. or its density p/,.. Traditionally, the

Edgeworth approximation of third order is taken and one obtains

where cG(/t) varSft. Considering densities in (12) we obtain

<y(/y) <y(/')f~'"'y//,(.<y)

and inserting (15) gives an approximation for ,g(y), which is good as long as y is

in the neighbourhood of ax From this one obtains the distribution function

G(x) (?(/>,) y c (y)Ey (16)

— OO

or

1 - G(x) ,g(/i) I e"^fiift(y)dy (17)
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For numerical reasons for /i < 0 (x < £"5) formula (16) is preferable and for
/i > 0 (a- > £5) formula (17). E.g. substituting (15) in (17) one obtains for > 0

OO

1 - G(at) « ^ ^(y) - (ig)

Define the so-called Esscher functions as

OO

£/,(.') := y e No

0

then 18) can be rewritten as

1 - G(.r) « g(/>)e-'"'(£„H - £,(,,))

where « := /i<r(/i) and £o and £3 can be rewritten as

£q(x) [I - $(.r)]/*/£r0(.c)

£3(•') fi - .»- +
/2?r V 7>(x) 7

These considerations generalize easily to higher order approximations. Obviously,
this method is more sophisticated than the previous ones. One important point is

that one needs to know or to approximate the moment generating function and the

quality of the approximation of p(.x') depends on the quality of the approximation
of y(/i). Moreover, p(x) has to be estimated pointwise. But the great advantage

of this method is its accuracy in the tails.

2.7 77re ÄK/z/fepcfint met/tor/

The saddlepoint method has originally been developed by Dan/e/.v (1954) as an

approximation of the density of the mean of n iid observations. The basic idea is

an explicit inversion of a Fourier transform which can be obtained in form of an

asymptotic expansion in powers of Its dominant term is called saddlepoint

approximation and has the advantage that for an important class of densities the

relative error is uniformly over the whole support of the random variable.
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The idea of a saddlepoint approximation has since then been applied to many
other areas of statistics, see e.g. Fz<?/tY and Ttonc/zeF (1990). For compound
Poisson and Pölya process the method has been used by FmTwcto et al. (1985)
to approximate tail probabilities ^ > ^)> where 7V is either Poisson or
negative binomial distributed.
In the next paragraph 2.3.1 we explain the general idea for the tail probability of
the mean 7f - "F. 20, and discuss its extensions to random sums in 2.3.2.

2.3.1 Saddlepoint expansions for tail probabilities

We follow Tense« (1988). Suppose we want to approximate the distribution tail

G„(x) P(~ Sfe=i > ^') where (20^)^^^ are iid with common distribution
function F and Fourier-Laplace transform

<p(/t + 7m) Fexp((/i + 7u)2fi)

defined for /i < r < oo. Then we shall use the following inversion formula
[ MF/er (1941), Theorem 7.6.b, p.70]

OO

+ <"0
exp(-(/t + (19)

27T ,/ /). +

which holds for 0 < /i < r if p(/i + 7m)/(/i + 7m) is integrable. Furthermore, we

assume that <p(/i + 7m) —> 0 for |m| —> oo. By a change of variables we obtain for

G„:

OO

p p"(/z)cxp(-n/z.r) 1 T / m \ Ft
*v/n/icr(/i) 27T 7 ^ \\/n/ 1 + m/(\/n/icr(/z))

where

ip(/t + 7M/<T(/I))
y/,(") xrx exp(—?.M;r/cr(/t)) (21)

F (7')

Notice that g>(/i + 77)/(p(/t) is the characteristic function of an exponentially tilted
random variable as defined in (13). Again /i is chosen such that x is equal to
the mean, i.e. ft, is the solution of (d/dft) In p(ft) x. Furthermore, we have
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introduced a new scale cr(ft), which we choose to be equal to the standard deviation
of the exponentially tilted random variable, i.e. c5(ft) (d^/dft^) In <p(ft). The

point ft is the saddlepoint and the saddlepoint expansion is now obtained by

expanding the cumulant generating function lnip;,,('u); we denote by pfc(ft) its

cumulants; i.e. pfc(ft) «^(//^/(«"(ft))^ with «(ft) lnip(ft). Then a Taylor
expansion gives

- 1»V(0- ^5)}
exp (nflup(ft) + (/wp)'(ft) -

I V \Mcr(ft)

We expand exp j ^^3 consider all terms up to order O(^);
this gives

If we set now

«,(•-) w /\.-v«oft2y
V^tt ./ 1 + Î'«/^

— OO

then
OO

1 /' „ / f-

\/27r ./ l + m/(V^Mft))
— OO

=«•<=> - !$«•<-->+w®''--'++«=»
where .1 ^/nftcr(ft), and expressions for Sfc(z) can be found e.g. in Aftramovftc

and Stegtm (1970), pp. 297-330:

5(,(a) -/2tt 1 - <£(2)) 0.3(2) 2'%(,a) - (7® - 2)

/74(c) 2 /i3,(a) 5(i(.a) 2''53(c) — da"
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2.3.2 Saddlepoint expansions for a compound Poisson sum

The situation we are interested in is the approximation of G(x)
A'a- > x) where /V is Poisson with mean A, where A is fixed, and

we consider the limiting behaviour of G(x) as x —» oo [ÊmèrecArte et al. (1985)].
We denote by

P.v ('' + ^ exp((/i + râ)Xi

the Fourier-Laplace transform of ATi, then the Poisson sum 5 has Fourier-Laplace
transform

Ps(/i + m) exp(—A(1 - <px(^ + «'«)))

Now assume <p_x satisfies, as required for fixed n in section 2.3.1, that <px;(/i +
to) —> 0 as |'u| —> oo, then

yoc,'(/r + fit) —» e~^ |u| —> oo

This effect which arises from the discreteness of iV in 0 has to be removed
and it can be done by defining G by P(7V A:) pa/(1 — po), A G N, and

5*
- """his implies, that

P(5 > x) (1 -po)P(5 > x) (23)

and with P(iV 0) 0 we obtain

OO
^

pp(/i + to) ^ Fa-C'' + to)P(AV A:)
_

(<pg(fr + "/) - Po)
fc 1

~~ ^
which tends to 0 as |u| —> oo.

We apply the inversion formula (19) and obtain together with (23)

OO

cm T / + '">-») e*p(-(fc + ,„),o<A,
2tt y Ai + to

— OO

for Ai < r < oo where (<ps(Ai + to) — Po)/(^ + ««) can be shown to be

integrable if <px satisfies this condition. The saddlepoint Ai is chosen such
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that (d/dd) lnpftd) Ap'ftd) x and the normalizing scale as ft(d)
(ft/dd^) lnpftd) Apftd), he. the exponentially tilted random variable 5/,.

has been standardized. Then we obtain

OO

TV (ps(d) -po)exp(-dx) 1 /' du
G(x) —— — / pftu)

dcx(d) 2x J 1 + iu/d er(d)
— OO

where

Ps(d + Z7z/cx(/i)) -pn
Pi ft) pry exp(—ixu/ftd))

Psft) -po

Write

Vs(Hm/a(/i)) po A 1

pi(u)
Psft) Psft)/ 1 ~Po/psft)

ignore po/ps and set

/ \ Psft + "//ftd))
P2 ft) w exp(-?.xu/o-(d))

Psft)

Notice that p2 Pa.s of (21), and if we approximate

OO

(psft) — Po) exp( —dx) 1 /ft du® ÎS S ./ **»<"/ +,„/M'0
— OO

then we obtain for the integral of the righthandside the same expansion as for the

integral in (22) with n 1, with

Pfcft) _ ft ft) __
PvVO

-2/a*-*

If ft ft) -» 0 and ft(d)/ftft) —> 0 as d —> r then for a large class of distributions

F the expansions of (22) are of order 0(ft(d)/v^A) and 0(ft(d)/A^ft,
respectively, as p —» oo.

A short version of the saddlepoint approximation can be obtained replacing ßftz)
in (22) by their asymptotic equivalents for z —> oo.

Ift(z) - 1, ift(z) - 3/z -> 0, ft(z) - 3, Bftz) - lb
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Consequently,

-po)exp(-M 1

"

^(A) {l+2^(3/?4W-5/3|W)}

The advantage of the saddlepoint method is that for a large class of distributions
the error is uniformly bounded [see FmèrecFto et al. (1986)].

2.4 Discrete mef/zo<is

The methods we discuss in this section start with an arithmetic claimsize

distribution; i.e. there exists some ci > 0 such that

If F has an absolutely continuous distribution function F, then a discretisation

procedure is applied as e.g.

[see Fei/meier and ßertram (1987), p.48]. Notice that the approximation methods

of this section all work on a finite support. Furthermore, the number of calculations
increases as well with a finer discretisation (smaller <T) as with a greater support
(for heavy tailed distributions).
We also want to emphasize the fact, that for all approximation methods introduced
in sections 2.1.1-2.2.3 only A and the first few moments of the claimsize
distribution have to be known (or estimated); for the Esscher and saddlepoint

approximation a transform has to be calculated. For the discrete approximations
in this section the whole claimsize distribution has to be known.

2.4.1 The Panjer approximation

We derive the recursion formula for AV Poisson distributed, i.e.

./ (.7 -HT JtZ), y G No

for y > 2

Pfc -P(W A:) e- ^ for fc G Nq
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Notice that p/j satisfies the following recurrence relation

Po pfe >
fc G N

Furthermore, the distribution of the total claim amount 5 is

OO

g(j) P(N==7fi)-^pA../^(./), J G No
/,:=()

For instance we have

OO

0(0) X] A*/^(0)/fe! e^N(0)-i) (24)
fc=0

Now the moment generating function satisfies for t < r < 00

OO

fc=0

Taking the derivative yields

OO

?'(f) 5Z /*"*(*) /' ("0

fc l
OO

A: — 1

A/'(f)p(f).

Since £(f) E~o <?(.?) and /(f) /CO «***. we obtain

OO OO OO

£ jA/ff(j) A ]T yd /(y) ^ 5(0 e"*

y=i .,=1 1=0

We compare the coefficients of e'N and obtain for y G M

J.9Ü') A ]T / /(0 <y(j - /)
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which gives together with (24) the Pan/'er recwrsio« /orm«/a:

5(0) -
,g(j) w ^ i/(0 .g(j - /), j G N

/ —
I

Notice that the important point is the recurrence relation for p*., A G No; the

method works for all p^ satisfying

Pfc=^a+^pfc„i, A-G N

for some a, 6 G M.

2.4.2 The fast Fourier transform method

Using the fact, that for the characteristic functions of / and p the following relation
holds

<p,s(/.) exp[/\((py(f) - 1)]

we proceed according to the following diagram

exp[A(yy(t)-l)]
./ —> py > <As —> g

This means we have to determine the characteristic function and its inverse.

The method we use can be explained as follows: For a given vector a

(ao, • •, the vector 6 (&o, •••, i>„-i )' with

6 VFa, where VF „— — ' V / fc, j=0, •••, n— 1

is the Fourier transform of a. Now we have for VF (e~^ '

— V / fc, 7=0, n—1
that

VF VF n/
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where J is the unit matrix, which provides the inversion procedure. Thus we obtain

£ U « FFT+(a)

a — -TFfc - FFT" (6)
n n

Now consider the characteristic function <py of the distribution /(fc) F(y
fcrf), /c G Nq. If we compute <py(Aj) for t,- j G No, we obtain

°° -i Hut

7V (0 X] /(fc)e'k'' ' 2^/nd £ /(A:)o-
/c=0 /c—0

If we set

OO

/(A') X] /(& + '") • ^ 0> 1 « ~ 1

7=0

we obtain by periodicity

£/(fc)e' "

A—0

We define the vectors ^ (<py(Ao), •••, yv(^«-i))' and Z (Z(0)>

/(n — 1))^- Then we may rewrite the last formula as

^ fft+(7)

Applying this result to the compound Poisson distribution we obtain with the

corresponding notation

FFT+@ - exp[A(FFT+(/) - 1)]

and solved for g

fif -FFT-(exp[A(FFT+(/) - 1)])- n —

This way to calculate y from the given values /, is called the fast Fourier transform

method, even it is not yet fast. To justify its name, let us return e.g. to the
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transformation .FFT+. The complexity of the algorithm can be represented by
the number of complex multiplications which is of the order O(n^), because we
need multiplications to compute the product Wa. If n is even, the algorithm
can be accelerated. For n 2m, m G N, let be the n-th unit root u>„
We compute 62O

n—1 m —1 / \

E a, £ a,
\

j=0 j-1 ^ '
m 1

^ ' (flj + fy+ïii
.7 1

since uy/'"' 1 and «>*/. In the same way, with
77; — 1 we get:

n —1 m — 1 / \

W + 'O + rn
+

j=0 .7 1 ^ '
m — 1

.7 1

If we denote a* a,j + and a** (oj — Oj+m)'"in> 0 < j < m — 1, we

may replace one Fourier transformation of order n by two of the order m

771— 1 771—1

Z>2fc X] ' ^2A:+1 X]
,7=0 .7=11

A considerable reduction of the number of calculations can be achieved by
choosing n 2'. One can prove, that in this case the complexity of the algorithm
is of the order 0(n • Z) 0(n logg n) [see ßü/z/mann (1984)]. Obviously the

same is true for the transformation

If n 2', the fast Fourier transformation can be programmed recursively according
to the following Nassi-Shneiderman diagram
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procedure FFT(A:,s)

m <— n/|2s|

yes

m > 1

no

for j <— 0 to m — 1

/t <— ajt+j —

"fc+j <— ajc+j + ai+j+m

FFT(fc, 2s)

FFT(A: -f m, 2s)

Herein Â: represents the index of the first element and n/|.s| the order of the fast

Fourier transformation, s is also needed to pick the correct unit root ;r,y.

If we define w, ^

FFT+ (a) < FFT(0, 1

/ 7 / (a) <— FFT(0, -1)

To illustrate, how the procedure FFT works, we give an example with n 8

(i.e. / 3):
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6,. r

000 Go ao &0 *<
ao &0 FFT(0,4) *ao — 60 000

001
*<

a, f\FT{0,2) ai 64 **ao II 100

010 "2 «2 64 ao 62 F/T(2,4) *ao &2 010

Oil Û3 f\FT(0,l) Û3 ai **ao 110

100 Û4 ao 61 ao fct FJT(4,4) *ao ii 001
101 as

**< ai f\FT(4,2) *<
ai 65 #*ao 65 101

110
111

ae Û2 is
67 **< ao ^3 FFT(6,4) *ao 63 Oil

"7 [ "3 ai 67 **ao 67 111

The 6-rows show, which elements 6^ are computed with the help of the corre-
spending a-values. After the completed transformation, the element with index r
is at a different place, say r'. The two numbers r and F are related in the following
way: If we reverse the digits in the binary representation of r (with I positions)
we get a binary representation of r' [for a proof see ScAwarz (1977)]. To get the

right order of the elements of the Fourier transform, we have to renumber them,
after finishing the procedure FFT.
In the sequel we shall abbreviate fast Fourier transform by FFT. For a recent

summary of the FFT method in insurance mathematics see TmèrecT/v et al.

(1992).

2.4.3 The Monte-Carlo method

Monte-Carlo simulation is nowadays a well established tool in almost all fields of
applied mathematics. Random number generators are installed on every computer,
generating standard uniform random numbers. From these one can derive random
numbers of any distribution. In our case we have to generate random numbers for
the claimsize distribution F and also for the Poisson distribution.
The simplest method to generate random numbers from a distribution F is by

means of the generalized inverse

F*~(ti) inf F(.r) > //}

if it can be calculated explicitly. This is easy e.g. for the exponential distribution.
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For uniform distributed [7

Ä" -^ln(l-£7)

is exponentially distributed with parameter a.

To generate Poisson distributed random numbers n, we create an array p with
A:

p(A:) P[ZV < A'] ^ tor 0 < A' < AVmax- The following binary search
2— 0

algorithm returns n.

z 1, n <— AA'mai

random

m <— [(Z + TI)/2]

N. U > P(to) .to

yes n. no

Z <— TO 71 <— 772

until n — Z < 1

Herein, "random" generates standard uniform random numbers and [x] denotes

the integer part of x.
For more sophisticated algorithms see e.g. Morgan (1984) or 7?ip/ey (1987).

To simulate values sp, sp, %, to G N, of the total claimsize 5 we first

simulate Poisson random numbers rij, ri2, • • •, rim,, and then n*, random numbers

yfci, A 1, rife, A: 1, to, according to the claimsize distribution F.
Then

" i'

«A- ^ 1, • ''ri,
2=1

are simulated values of 5. An approximation for the total claimsize distribution
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G is now given by

^ m

G(.x) « — ^ -^(.s,,.<./) S M
'

fc= I

We did not include any figures of the outcome in section 3, the reason beeing that
the method can be made arbitrarily exact. Nevertheless, the computertime needed

to gain comparable exactness as for other discrete methods is considerably higher.
A more detailed discussion of the pros and cons of this method can be found in

Fei/mez'er and Bertram (1987).

3. Examples

This section is devoted to a graphical presentation of the approximation of the tail

G(x) 1 — G(x) of the total claimsize distribution by the methods described in

the previous section. As one can imagine it was not easy to choose an appropriate
sample of the graphics: On the one hand we wanted to show some typical pictures,
but also on the other hand show how wrong things can go. The graphics are

collected at the end of the section. The underlining explanations to the figures are

in the same order as the approximating curves; i.e. top to bottom.
We restrict ourselves to the Poisson model, so we have to specify the Poisson

parameter A and the claimsize distribution. The methods are of particular interest

for small samples and hence we decided to take always A 10 and to choose the

parameters of the claimsize distributions appropriately; the expected total claim

amount ES ranges for our examples from 10 to 27.

For the two discrete methods, the Panjer approximation and the FFT method,
the error is uniformly bounded and can be made arbitrarily small by taking a

sufficiently small discretisation parameter <i Furthermore, both methods show

virtually the same curve. So we only show here the FFT approximation and

we consider it as a reference curve for the quality of the other approximation
methods.

3./ Txponen/w/ c/aimx/zes

The one exception where we did not take A 10 is for exponentially distributed
claimsizes with density

/(.r) « a: > 0. a > 0
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It is well-known that in this case it is possible to calculate explicitly the distribution
function G of the total claim amount which is given e.g. in //«itea«« (1988)

So we had hoped for an excellent reference curve for all our approximation
methods, namely the true distribution. Unfortunately, the analytical representation
as an infinite series caused numerical problems and we did not obtain sufficient

exactness for A 10. On the other hand for A 1 and a standard exponential
claimsize distribution we obtained a very accurate tail 1 — G and we present it
in Figure 1 and 2 together with some approximation results. We also calculated

the relative error |G(x) — F(x)|/G(x) for different approximations iF Whereas

for the FFT approximation the error remains bounded for the normal power
approximation it is increasing and becomes rather large in the tail.

J. 2 Gamma cfotnTMted c/aim^/zes

The gamma density is given by

In our example we took a 5 and 6=1/5 which implies with A 10 that

FS 10. All methods performed rather well around the mean whereas in the

extreme tails the approximations by orthogonal polynomials perform rather poorly

as can be seen in Figure 3 where the range from 20 to 30 has been chosen. Since

the moment generating function is explicitly given, approximations like Esscher

and saddlepoint are easily computed and almost coincide with the FFT curve.

Our reference curve, the FFT approximation, has been calculated with d 0.02

and n 2'" 4096.

3.3 HF/6w// d/.vm'fiwmd c/a/m.sTm.v

The Weibull density is given by

A' —
' j=0

x > 0, a, 6 > 0.

x > 0, a, 6 > 0
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For our examples we took two different parameter sets such that the tail decreases

for one set of parameters faster than exponential and for the other slower.

For a 2 and 6 3 we obtain quite reasonable approximations also for the far
end tail (Figure 4). For the FFT approximation we took d 0.05 and n 4096.

The situation is different in the subexponential case, here we took a 0.5 and
5 0.75. Figure 5 shows approximations in the range 10 — 60. Flere the Gram-
Charlier approximation shows a rather strange behaviour between 25 and 45.

Figure 6 shows that in the far tail, which is noticably heavier than in Figure 4, the

approximations are further apart from each other. For the FFT approximation we
took d 0.03 and n 8192.

J. 4 Lognorma/ c/a/ms/ae

The claimsizes have density

I -J.- cxp I - fcaasL J. o. I

Notice that the moment generating function is infinite for all positive arguments,
hence approximation methods like Esscher and saddlepoint are no longer possible.
All moments are finite, but grow very fast for certain parameter values which can

cause serious trouble. Edgeworth expansions of different order make this very
obvious.

For a 1 and 6 1/5 the FFT approximation and the Edgeworth expansions
of orders 3, 4, 5 and 6 seem to amalgamate into one curve (Figure 7). Even in the

tails they are very close (Figure 8).

This is not very surprising by the following table which shows the first six moments
of S and the coefficients of the Edgeworth expansion.

FX FX* FX* FX* FX* FX®
2.77319 8.00447 24.0468 75.1886 244.692 828.818

A3 &4 dB U-6

-0.055963 0.004889 -0.0003557 0.001588

Moments and Edgeworth coefficients for lognormal claimsizes with (a, 6) ^1, |
7a£/e 7
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The graphics change gradually when one decreases a and increases 6 gradually.
The moments grow faster and for a 1/5 and 6 1 the disaster is shown in

Figures 9-12. The plain line is obtained by FFT approximation with d 0.05

and n 4096. Figure 13 shows 9-12 together.

The first six moments of 5 and the coefficients of the Edgeworth expansion are

given in the following table.

FX FX* FX* FX* FX* FX«
2.01375 11.0232 164.002 6634.24 729416 2.17 • 10«

Û3 fl-4 ^5 Û6

-0.236206 0.227492 -0.476461 2.28838

Moments and Edgeworth coefficients for lognormal claimsizes with (a, 6) 1^

7aWe 2

3.5 Pareto ttonPwtei c/a/Vn«'zes

The Pareto density is given by

j / \ £>-f-l

/(;c) — —^— .r > 0. ft. 6>0.
a \ a + .r /

Also here the moment generating function has its singular point in 0. We took the

parameters a 6 and 6 5 which guarantees the existence of 4 finite moments.

Some approximations are shown in Figure 14.

3.6 Mon/e Car/o

As mentioned in section 2 also simulation methods provide useful approximations.

Indeed they give good results but as ad hoc methods they proved to be slow. Also

the many textbooks on simulation methods show clearly that there is a lot more

to say to this subject than we are prepared to do in this paper.

Nevertheless, we show some examples in Figures 15-18. As Poisson parameter

we took A 10 and simulated the Poisson variable A' by the binary search

algorithm described in section 2.4.3. Then we simulated 1000 total claims, where

we used Marsaglia's polar method to simulate normal random numbers which
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we transformed into lognormal ones. The other distributions we simulated by
inversion.

It should be noted, that the heavier the tails are the less points determine the tails.

Therefore particular methods have been developed to simulate distribution tails

[see e.g. AT//er and (1991)].

Markus Buchwalder
Eric Chevallier
Claudia Kliippelberg

Department of Mathematics

ETH Zürich
CH-8092 Zürich
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F/gwre 7 Exponential distribution

Normal power approximation of 2nd order
Esscher approximation of 3rd order
Exact distribution and FFT approximation
Saddlepoint approximation of 3rd order

Normal power approximation of 2nd order

Esscher approximation of 3rd order

Exact distribution and FFT approximation
Saddlepoint approximation of 3rd order
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-F/gMA? 5 Gamma distribution

Normal power approximation of 2nd order
FFT approximation
Esscher and saddlepoint approximation of 3rd order
Gram-Charlier approximation of 3rd order
Gamma approximation of Bowers of 3rd order

F/gwre 4 Weibull distribution (a 2, 6 3)

Normal power approximation of 2nd order
FFT approximation
Gram-Charlier approximation of 3rd order
Gamma approximation of Bowers of 3rd order
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Gram-Charlier approximation of 3rd order
Normal power approximation of 2nd order
FFT approximation
Gamma approximation of Bowers of 3rd order

Figwre 6 Weibull distribution (a 0.5, 6 0.75)

Normal power approximation of 2nd order

FFT approximation
Gamma approximation of Bowers of 3rd order

Gram-Charlier approximation of 3rd order
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/Tgwre 7 Lognormal distribution (a 1, 6 1/5)

Edgeworth approximations of order 3, 4, 5, 6 and FFT approximation

F/gwre <5' Lognormal distribution (a 1, 6 1/5)

FFT approximation
Edgeworth approximation of 6th order

Edgeworth approximation of 5th order

Edgeworth approximation of 4th order

Edgeworth approximation of 3th order
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F/gi/re 9 Lognormal distribution (« 1/5, 6 1)

i

o s

0 4

D 2

10 20 30 40

Edgeworth approximation of order 3

Figwre 70 Lognormal distribution (a 1/5, 6 1)

l

10 20

Edgeworth approximation of order 4

30 40
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Fzgwre 77 Lognormal distribution (a 1/5, 6=1)

Edgeworth approximation of order 5

75'gare 72 Lognormal distribution (a 1/5, 6 1)

10 »20 30 * 40

Edgeworth approximation of order 6
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F/gwre 73 Lognormal distribution (a 1/5, 6 1)

F/gare 73 Pareto distribution (a 6, 6 5)

FFT approximation
Normal power approximation of 2nd order
Gram Charlier approximation of 3rd order
Bowers approximation of 3rd order
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/ogwre /5 Standard exponential distribution

76 Standard exponential distribution
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Fz'gwre /7 Lognormal distribution (a 1/5, 6=1)

Fz'gwre 78 Pareto distribution (a 2, 6 3)
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Summary

The present paper is an outcome of a seminar in insurance mathematics at ETH Zürich in SS 92.

The aim was to introduce the students to the traditional algorithms using modern computer tools.

Since graphical representations are more intuitive than rows of numbers the students were encouraged

to use programs offering graphical aids as e.g. MATHEMATICA. The resulting graphics were most

interesting and we hope that this opinion is shared by our readers.

Zusammenfassung

Die vorliegende Arbeit ist das Ergebnis eines Seminars für Versicherungsmathematik an der ETH

Zürich im Sommersemester 1992. Ziel des Seminars war es, die Studenten mit den traditionellen Algo-
rithmen bekanntzumachen, wobei zeitgemässe Computermöglichkeiten einbezogen werden sollten. Da

graphische Darstellungen intuitiver sind als Zahlenreihen, wurden die Studenten ermutigt, Programm-

pakete wie MATHEMATICA zu verwenden, die gute graphische Möglichkeiten bieten. Wir fanden die

präsentierten Graphiken höchst interessant und hoffen sehr, dass unsere Leser diese Meinung teilen.

Résumé

Le présent article est le produit d'un séminaire de mathématiques d'assurance qui a eu lieu à l'EPF de

Zürich durant le semestre d'été 92. Le but était de présenter aux étudiants les algorithmes classiques en

utilisant les outils modernes de l'informatique. Les représentations graphiques donnent une meilleure

intuition que les tableaux de valeurs numériques et les étudiants ont été encouragés à utiliser des

logiciels permettant des représentations graphiques tels que MATHEMATICA. Les résultats graphiques

sont particulièrement intéressants et nous espérons que cette opinion sera partagée par nos lecteurs.
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