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Jan Grandell

Some remarks on the Ammeter risk process

1 Introduction

The early development of risk theory was, to a large extent, dominated by
Swedish scientists. The most prominent pioneers are Filip Lundberg and
Harald Cramer. Probably most readers are further familiar with namens
as Arfwedson, Esscher, Laurin, Saxen, Segerdahl, and Täcklind. All these

pioneers were mainly interested in finding and proving results related to the
ruin probability when the claims occur according to a Poisson process. We
also mention Ove Lundberg, who 1940 presented a thesis about Markov point
processes and, more particularly, mixed Poisson processes.
In the early development of risk theory, the Swiss actuary Hans Ammeter also

plays a very important role. In Ammeter (1948) results were presented about
the ruin probability, in a model with randomly fluctuating "basic- probabilities"
or intensities. Thus the claims occur according to a Cox process. That special
Cox process is built up by independent and stochastically identical pieces of
mixed Poisson processes. Mathematically the analysis of the Ammeter model
is related to the analysis of mixed Poisson process. Due to the war, Ove
Lundberg's thesis was not available to Ammeter. However, despite of certain
mathematical similarities, the Ammeter model and the mixed Poisson process
are different kinds of Cox processes; the Ammeter process is ergodic while
the mixed Poisson process is a typical example of a non-ergodic process. For
a modern treatment of mixed Poisson processes and - to some extent - of
the Ammeter model, see Grandell (1995). The purpose of this paper is to
give a modern treatment of the Ammeter model. It is natural to let those
(fixed) epochs constituting the border between the underlying mixed Poisson

processes, play a fundamental role in the analysis.
In Section 2 we give background for the analysis. The most important part is

the simple inequalities in Lemma 1. We will further give a survey of known
results when the claims occur according to a renewal and a Poisson process
respectively.
Section 3 is devoted to "general" Ammeter models, and Section 4 to the case
with infinitely divisible intensities.
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2 The risk process

2. / The general risk process

The usual model of a risk business is based on the following independent
objects:

(i) a point process N\
(ii) a sequence of independent and identically distributed random

variables, having the common distribution function F, with mean value

p, and variance a2.

Here N describes the times and {Zk} the costs of the claims. We will here only
treat the case with non-negative risk sums, i.e., we assume that F(0-) 0.

Notice that, for technical reasons, "zero risk sums" are allowed. The total
amount of claims paid by the company in the interval (0, f] is then described

by the claim process

where c is a positive real constant.
The ruin probability \P(u) of a company facing the risk process X and having
initial capital u is defined by

F(u) P{u + X(t) <0 for some t > 0}

Let A > 0 be given and put

^a{u) P{u + X(kA) < 0 for some integer k > 0}

Thus (u) is the probability for the risk process to be ruined at some epoch
of the form t kA, k — 1,2,
The following simple lemma will be used several times.

Lemma 1. Let A > 0 be given and assume that almost surely no claims occur
at the epochs t, kA, k 0,1,2, Then

F(u + cA) < \Ta(u) < ]P(v,) < &a(u — cA) for u> cA

The risk process, X, is defined by

X(t) ct- Y(t),
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Proof. Assume that u + cA + X(i0) < 0 for some t0 e (fc0A, (fc0 + I) A], The
premium received by the company in the interval (f0, (fc0 + I) A] is less than
cA. Since F(0-) 0 it therefore follows that

u 4- X((k0 + 1)4\) < u + cA + X(to) < 0.

Thus the first inequality follows. The second inequality is trivial, and the third
inequality follows from the first one. The restriction u > cA is not necessary,
but we have introduced it in order to avoid FA(u) with u < 0.

The tail behaviour of the claim distribution F is of utmost importance for the
ruin probability. Put

Definition 1. We talk about small claims, or say that F is light-tailed, if there

exists > 0 such that h(r) | 4-oo when r f (we allow for the possibility

roo 4~oo). n

The important part of Definition 1 is that h(r) < oo for some r > 0. This means
that the tail of F decreases at least exponentially fast, and thus for example
the lognormal and the Pareto distributions are excluded.

If h(r) ooforall?' > 0 we talk about/arge c/aim.v, or say that F is heavy-tailed.
A good survey of this case is given by Embrechts and Veraverbeke (1982). In
the latter case, we restrict ourselves to claim distributions related to the class

S, defined below.

Definition 2. A distribution G on [0, oo) belongs to the class S ofsubexponential
distributions if

OO

0

where G(2) (x) f G(x - y) dG(y).
0
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All G £ S have the property, see Embrechts and Veraverbeke (1982, p. 62),

lim
'

1 ^ 1 fora11 y' ^x—>oo I — G(x)

Much of our discussion will rely on known results in the cases where A is a

Poisson process or an ordinary renewal process. Although the Poisson case

was the only case known at the time of Ammeter's contribution, we will first
give some known results in the renewal case. The use of the tildes and stars in
the notations in Sections 2.1 and 2.2 is meant to facilitate the applications in
Sections 3 and 4.

2.2 The ordinary renewal risk process

The first treatment of the ruin problem when the occurrence of the claims is

described by a renewal process is due to Sparre Andersen (1957). In a series of

papers Thorin has carried through a systematic study, see for example Thorin
(1982).
Let N be a point process and let Sk denote the time of the fcth claim. N is

called an ordinary renewal process (with inter-occurrence time distribution
K) if the variables S), S2 — S), S3 — S2, are independent and have a

common distribution K with mean 1 /a. Let k denote the Laplace transform,
\.e.,k(v) /q°° e~vs d,K(s).
The distribution of the costs of the claims is denoted by F where F(0—) 0.

Thus ruin can only occur at claim epochs. To avoid some technical complications

we assume that F contains an absolutely continuous component.
Furthermore p., h(r) and so on have their natural interpretation with respect to
F.
The relative safety loading q is defined by

~ C — QUI
Q — •

CT/t

The risk process, X, is said to have positive safety loading if p > 0.

Consider now the small claim case.
The adjustment coefficient or the Lundberg exponent R is the positive solution
of

(h{r) + l)fc(cr) 1 (2)
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The following basic results hold, see Grandell (1991):

F(ii) (1 - JiR)e~Bu (3)

when the claim costs are exponentially distributed with mean Ji, cf. Sparre
Andersen (1957, p. 226). We further have:
the Cramer-Lundberg approximation, cf. Thorin (1974, p. 94),

lim cuuF(u) C; (4)
u—> oo

the Lundberg inequality, cf. Sparre Andersen (1957, p. 224),

F(u)<e~rhl. (5)

Consider now the large claim case. Let Fj be defined by

Z

f{\~F[x))dx,
L J

0

and assume that Fj G S. This includes lognormally and Pareto distributed
claims.

Then, cf. Embrechts and Veraverbeke (1982, p. 65),

1

F(u) ^-(1 — Ff(u)) as «-»oo. (6)

(The sign ~ means that the quotient between the two sides tends to one.)
We will now essentially consider Pareto distributed claims, but we will need a

slight generalization to distributions with regularly varying tails. Then

1 — F{z) ~ z~6L(z) as z-xx), (7)

where L is slowly varying at infinity, i.e.,

L(xz) ~ L(z), as z—>oo,

for all x > 0. Distributions fulfilling (7) are sometimes said to be of the Pareto

type. We will only consider 6 > 1 so that Ji < oo. It follows from Feller (1971,

pp. 279 and 281) that
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and

Thus Fj e S and

&(u) ~ ^(w) as u-^oo. (8)
ß/t(6 - 1)

In the Poisson case (8) is due to von Bahr (1975).

Example /. Let F be a Pareto distribution with Ö > 1, i.e.,

1 - F(z) for z>a> 0.

Then (7) holds with L(z) as. Since p — we get from (8)

.,5
F{u

gp{<5 - 1)

(5-1)on / u\
as u —> oo (v)

r(<5 — 1) — nSa \ a.

cf. von Bahr (1975).

2.3 The Poisson risk process

Let N* be a Poisson process with intensity a*, which - expressed in terms of
the renewal process - means that

K(t.) I - c~° ' tor t>0 or k{v)
1

1 + v/a*

In the small claim case R is the positive solution of

[l 1 or h*{r) — (10)
1 + a-/a* w a* v '
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For exponentially distributed claims (4) is reduced to

1

ip*(u) - e (11)
1 4 g*

In the Cramer-Lundberg approximation the constant is explicitly given by

g*,i*
h*'(R) - c/a*

' 1 '

The Poisson versions of (2)-(5) are due to Lundberg (1926) and Cramer
(1930).
Let X*(t) be a Poisson risk process with intensity a and claim distribution
F. Assume that F*(u) is known, or at least "asymptotically" known. Let, as

before, F^(u) be the probability that the risk process is ruined at some epoch
of the form t k,A.
It follows from Lemma 1 that

F*(u + cA) **A(u)
<p*(u) ~ F*(u) ~ '

where, of course, the second inequality is trivial.
Let X be a renewal risk process with inter-occurrence time distribution

f 0 for t < d, _av M/1,

for t > Zi; °r k<"> e (14)

and claim distribution

H (Qlf^ e.-<AF<k\z), (15)
f-—' A;!
k=Q

where F*(°) (2) |° f°r Z < °' andF*W(z) Lz F<k~x\z-y)dF*{y).
\ 1 for z > 0

Since X* has stationary and independent increments it follows that X has ruin
probability cf. Grandell (1991, p. 67). Thus we have

5 \ and Ji a* Aß*
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In the small claim case we have <P* (u) ~ C*e Ru, where R and C* are given

by (10) and (12). Consider now X. We have

00 * A\ k

/•W+l^lT e—^(/^(r) + l)fc
A;=0

ea*4/i*(r)t (16)

and thus the Lundberg exponent is given by

ca*Ah»(r)-crA l OJ. 0*/l*(r)=cr. (17)

Thus X* and X have the same R, and it follows from (4) that ^(u) ~
CAe~~Ru for some constant CA. In this case it follows from Cramer (1955,

p. 75) that

Ca~ « « n—TT aso;M->oo. (18)
H e R- a* A

From Lemma 1 we get > Ce~RcA, which - in comparison with (18) -
merely means that CA > 0 for large values of A.
The fact that Lemma 1 is rather useless in this case may be the explanation
why the underlying simple idea, to our knowledge, has not been used.

In the large claim case the situation is quite different. Assume that Fj e S.

From (6) and (1) we then get

F*(u + c.A) 1 -Ff(u + cA)
hm —; lim 1,

u^oo F*(u) u-»oo 1 — Fj(u)

and it follows from (13) that

(«)-**(«) as uoo. (19)

Intuitively, in this case, ruin is caused by a claim so large that the risk process
will remain negative until the next epoch of the form kA.
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3 The Ammeter process

We will define the Ammeter process within the framework of Cox processes.
Intuitively we shall think of a Cox process N as generated in the following way.
First a realization a(t) of a non-negative random process A {A(t); t > 0}
is generated and conditioned upon that realization, A is a non-homogeneous
Poisson process with intensity function a(t). The process A is called the intensity
process. This intuitive definition of a Cox process suffices for our purposes. A
detailed discussion of Cox processes and their impact on risk theory is to be

found in Grandell (1991).
A natural measure of the variability of the intensity process is o\, defined by

0

Grandell (1991, p. 123) proposed the approximation RD of R, given by

^ 2gnp
D

t'2cj2\ + «(c2 + P2)
'

where D stands for "diffusion".
This approximation must be regarded as based on ad hoc reasoning, although
the ideas behind it are due to a diffusion approximation of the risk process,
which is reasonable for small values of g.
The first Cox process, other than the Poisson process, used in connection
with risk theory was the mixed Poisson process. Below we give the modern
definition.

Definition 3. Let Abe a non-negative random variable with distribution U and

mean a. The Cox process obtained by letting

Definition 4. Let A > 0 be fixed and let {Lk; k 0,1, ...} be a sequence of
non-negative, independent, and identically distributed random variables with
distribution U and mean a. The Cox process obtained by letting

A(f) Lk for kA <t<(k + 1 )A,
is called an Ammeter process. 0

A(-) A, a.s.,
is called a mixed Poisson process.

For a mixed Poisson process we have o\ lim^oo \t2 Var[/1] oo.
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Figure 1. Illustration of the intensity process in the Ammeter case.

The Cox process with this intensity is called an Ammeter process, since it is

essentially the model considered by Ammeter (1948). The Ammeter process
is technically related to the mixed Poisson process since it can be looked upon
as built up by a sequence of independent mixed Poisson processes. However,
besides from that relation, it is very different from a mixed Poisson process.
For an Ammeter process we have

lim —— Var
A;—»oo kA

rfc-l
Y.AL,
j=0

where a2 d=f Var[Lfc], Thus we have

pD
AfL2(j^ + a(a2 + p,2)

For exponentially distributed claims, RD reduces to
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Let now N be an Ammeter process, F the distribution of the costs of the
claims, F(-) the corresponding claim process, and X(t) ct - Y(t) the risk

process. Let u denote the Laplace transform of U, i.e.,

OO

u{v) jervedU{l)

As usual!P(u) denotes the ruin probability.
A fundamental property in the analysis of Ammeter processes is that {Zk},
defined by

Zk d= Y{{k + \)A)-Y{kA), k 0,1,

is a sequence of independent and identically distributed random variables. Let
F denote their common distribution function. Then we have, cf. (15),

°° oo k
F(z) [ Y ^T-e~(AF{k\z)dU(e) and Ji aAp. (20)

•' uo k-
0 k=0

Let X be a renewal risk process with inter-occurrence time distribution K
given by (14) and claim distribution F given by (20). Obviously the sequences

{X(kA)}'^L(j and {^(fc4\)}^_0 have the same distribution. Since in a renewal

model ruin can only occur at claim epochs, it follows that X has ruin probability
^a(u)• Thus the situation is somewhat contrary to the Poisson case, since here
it is reasonable to regard !^(u) as known. Form Lemma 1 we now get, cf. (13),

1 < ^
~ cA>

for u>cA. (21)
&a(u) &A(u)

Consider the small claim case and assume that U is light-tailed, i.e., that u
fulfills the same condition as h. Then we have, cf. (16),

OO

h(r) + 1 J elAh{r) dU(i) u(—Ah(r)).
o

This implies that F is light-tailed.
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Since (h(r) + l)fc(cr) u{-Ah{r))e crA it follows that R is the positive
solution of

u{-Ah(r))e~crA 1 (22)

A Lundberg inequality now readily follows.

Theorem 1. if'(u) < Cc~Ru, for some C < oo.

Proof. The theorem is an immediate consequence of (21) and (5):

T{u) < $A(u - C.A) < e-»(n~cA) ecHAe-Tfu

Since ecRAe-Ptu > ^ for u < cz^ ^g t(ieorem holds for all values of v.

From the proof of Theorem 1 it is seen that we can choose C erRA. Although
we do not at all claim that this is the smallest possible value of C we must in
general, cf. (5), accept that C > 1.

Put,cf. {A),Ca =f linq^Qg eriu<PA(u). We do conjecture that also the Cramer-

Lundberg approximation holds for \P(u). This conjecture is based on Asmussen
(1989), Asmussen and Rolski (1994), and Grigelionis (1993). In any case we

may define

C =f liminf eRu&(u) and C =f lira sup eRu\P(u),
U—*0O u—

and it follows from (21) that

CA < C <C < ccRACa (23)

Recall from Section 2.3 that a similar use of Lemma 1 in the Poisson case
turned out to yield little information for large values of A. The reason was
that RA became large for large values of A.
Here the situation is - at least sometimes - quite different, since A is involved
in the definition of X and thus also in R.

Proposition 1. Assume that there exists a positive solution r(] of

u(—r/a)e~^+e^r 1. (24)

Then we have

ecRA < e('+^r<).



Proof. Put i?0 /laAR. Noticing that cRA (1 + q)Rq it follows from (22)
that R0 is the positive solution of

sH'G^))e~"+'"r=1'
Since u(-v) is increasing in v and since li(r) > rp it follows that

s(-Ah(^))-sl~r/ah (25)

Thus we have

1 =q(K~Ah(K~~^j^)e~{]+Q)R" >u{-Po/a)e~{]+e)n" '

which implies

u{-R0/a)e-(]+^R" < w(-r0/a)e-(,+^r°.

Since u(—r/a)e~^+e^r is convex in r, it follows that i?0 < r0 and the

proposition is proved.

Remark 1. Suppose now that A is large. In "kind" cases we have Ah(r/(paA))
~ r/a and thus we have approximate equality in (25). Therefore the bound in

Proposition 1 ought to be the best possible bound holding for all A
Consider

T T {0\ f ^ ^ O —(XVU{f) i or u(v) e av
(1 for I > a,

which corresponds to the Poisson case. Then (24) reduces to —gr 0, which

obviously has no positive solution.

Example 2. The simplest non-trivial example, to which we will return, is

probably when Lk is exponentially distributed. Then u(v) — 1/(1 -I- av) and

(24) reduces to

1
e-(i+e)r 1_ (26)

1 — T

Some values of tq and e^+e)r<) are given in Table 1
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Table 1. Values of r0 and e(1+^r" for exponentially distributed intensity.

Q r0 eO+eK

5% 0.0937 1.1034
10% 0.1761 1.2138
15% 0.2490 1.3316

20% 0.3137 1.4571

25% 0.3714 1.5908

30% 0.4230 1.7330

It is seen from (24), and illustrated in Table 1, that r0 increases with increasing
values of g. This is quite natural, since the higher safety loading the quicker
the risk process "recovers" after ruin.

Example 3. A natural extension of the case considered in Example 2 is when

Lk is /"-distributed. Then

u{e)d= U'{() ^--P"]e~ße, for £ >0,
1 (7)

where 7 is called the shape parameter and ß the scale parameter. In this case

we say that the intensity is /"(q, ß). We have

a ^ °L =f Var(Lfc] and U{v) ^1 + ^
and (24) reduces to

(1--I 7c-(l+^r l or —l—-e~(,+e)r/7 1. (27)
V 7 J l-r/7

Consider now the case where F is heavy-tailed, or more precisely that Fj S.

Then (6) applies to ^(u). From (1) and (21) its follows that F(u) ~ /^(u),
cf. (19), and thus

\P(u) ~ -(1 — Fj(u)) as u —> 00. (28)
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Assume now, for some 6 > 1 and some slowly varying function L, that

l-U{f)~ur6L{e) and 1 - F{z) ~ <pz~5L(z), (29)

where u> > 0 and f > 0. If lj 0, then (29) means that 1 — {/(£) o(£~s L(£)),
i.e., that lim^^ 0, and similarly if f 0.

Proposition 2. Assume that (29) holds and that at least one of the constants to

or </> are strictly positive. Then

~ L{u) as u -> oo. (30)
gnAp(o — 1)

In the proof of Proposition 2 we will need the following Lemma.

Lemma 2. 1 — U(£) o(£~sL(£)) implies P{N(A) > n} o(n~6L(n)) as

n —» oo.

Proof. By partial integration, properties of the r(n + 1, /^-distribution, and
that ?7,! > nne~n, we get, for a < 1,

P{N(A) >n}= f An^\tne^lA(\ - U{£)) d£
J n\
0

an/A

i
c

/A7l-\-
i on

c~lA dt-{ 1 - U{an/A))
n!

Z\r! + 1£n
< / —

.1!

0

oo
A7l+]i

an/A
an A(an)n TT,< — e an + (l -U(an/A))
A n\

(nn\n+] e~~an
< \ffffl + (1 _ U{an/A))

nne~n
< nanen + (1 - U(an/A)).
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Choose a < 1 /e. Then

P{N(A)>n} n(ae)n + (1 - U(an/A))
lim — 7——— < Inn

n —>oo n~°L\n) n~*oo n 0Lyn)

-( r {l-U{an/A)) n(£t/ nToo (an/A)-6L(an/A)

Proofof Proposition 2. It follows from Willmot (1990), after a slight modification,

cf. Grandell (1995), that 1 - U{t) ~ Lor6L(() implies P{N(A) > n} ~
ujAsn~sL(n) for u > 0. For to 0 Lemma 2 applies.
From Stam (1973, p. 311) it follows that

1 - F{z) ~ (u>pfiAfi + faA)z"6L{z).

Since p aAp the proposition now follows exactly as (8) followed from (7).

The case where both w and f are positive seems somewhat artificial, since it
means that U and F have almost exactly the same tail behaviour. If we let one
of those constants be zero, it is no restriction to let the other be one.
Let us first consider the case 0 0 and cj 1. This means that the heavy-tail
behaviour of F is caused by the variation of the intensity. It does not imply that
F is necessarily light-tailed, but it is less heavy-tailed than U. Then it follows
from (30) that

&(u) ~ ~^~7F—as u —> oo
gayo — 1)

Now consider the case <j> 1 and oj 0. This means that F is heavy-tailed,
and we can really talk about large claims. Then it follows from (30) that

~ —71 L(u) as u—* oo.
gp{b - 1)

In this case, cf. (8), there is no essential influence of the intensity. This
observation is in agreement with Asmussen et al. (1994).
We will now consider more in detail the case where F is heavy-tailed and U
is light-tailed. It turns out that we will need both that Fe S as well as that
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Ff £ S. The relation between these two conditions is not at all trivial. In order
to cope with these requirements, we will rely on the class §*, defined below.

Definition 5. A distribution F on [0, oo) belongs to the class S* if it has finite
expectation p and

ASo/'T-fm"'"-'1"''2"- d
0

From Kliippelberg (1989) it follows that the lognormal and the Pareto
distribution belong to cS*.

The following proposition was proposed by Kliippelberg (1994).

Proposition 3. Let F £ cS* and U be light-tailed. Then

F(ii) ~ -(1 — F/(?/)) as v —> oo.

Proof. We will first show that F and F are tail-equivalent, i.e., that

J - F{z) /nlim — const. £ 0, oo),
.T — OO 1 - F(z)

since it will imply (Kliippelberg 1988, p. 134) that F £ S*. From (20) we get

~Ti
k=o

1 - F{z) j (l - jr {-^-e~iAF{k\z)\ dU(I)

0
v k=°

]f:{-^rc-tAV-Fw(z))<iu(0,
00 !0A\k
E

0 k=0

and thus

' - TO ,,ym.
1 - F(z) J L k\ 1 ^ F(z)

0 *=°
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Since Fe S* implies (Kliippelberg 1988, p. 135) Fe S, we have, see Athreya
and Ney (1972, p. 148),

lim l1"Fl?(f) *3 for * 0,1,2,
z—»oo 1 — t [z)

Further, see Athreya and Ney (1972, p. 149), given any e > 0 there exists a

D < oo such that

-—^ ^ < D( 1 + s)k for all k and z
1 - F(z) ~ v '

Since U is light-tailed, this implies, for e small enough, that

o fc=°
v ;

°° 00 m A\k

0 k=0
OO

D- j eeAedU{i) < oo.

o

By dominated convergence we get

oo

lim izM flrnle-^kdum oA,
z * oo 1 - F(z) J ^ k\

0 fc-°

which implies (Kliippelberg 1988, pp. 134 and 135) that F, £ 8. Thus (6) yields

F(u) ~ ^(1 - Fj (?/,)). By L'Hospital's rule

i - F/(«)lim „ lim
«-.oo 1 - Fj(u) «-.oo I joo^ _

lim
aZ\ u—> oo 1 — Fj(?i)

follows, and the proposition is proved.
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Remark 2. We will now consider the relation between Proposition 2, in the
case u) 0 and </> 1, and Proposition 3. Let F be of the Pareto type, i.e.,
1 - F{z) ~ z~sL(z).
Although it follows from Klüppelberg (1989) that F £ S*, we will give a

direct proof, since it will give some insight in the properties of 8*. Following
Klüppelberg (1988, p. 135) we get

/' 7-%)V)(1" FM)dy 2 / ' (- rM"'" " Jr("))iy
0 0

0

~ 2 • 2sp < oo.

Thus F 6 8* follows by dominated convergence. Notice that a careless

interchange of limits and the integration in the first term leads to a wrong
result.
Thus Proposition 3 is a strict generalization of Proposition 2 when U is light-
tailed. The really nice thing with Proposition 2 is that F and U contribute to the
ruin probability in a rather symmetric way. It is therefore tempting to consider
F light-tailed and U 8 or S*. However, both 8 and 8* are defined in terms of
convolution properties, while there seems not to be any natural convolution of
U with itself involved. Therefore such an approach seems to be difficult.

4 Infinitely divisible Ammeter processes

We will now restrict ourselves to small claims. A major problem in this case
is that C, occurring in (4), is not given in an explicit form and therefore (23)
is not so easy to use. In the infinitely divisible case the situation is nicer, since

then the explicit form given in (12) can be used. This is, in fact, the essential

observation in Ammeter's original approach.

Definition 6. A random variable L with distribution U is called infinitely
divisible, ID, if for each n there exists a random variable lJnl such that L
has the same distribution as the sum ofn independent copies of L^n\
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An Ammeter process is ID if its structure distribution U is ID. This holds in a

"point process" sense, but we will only need that the mixed Poisson distributed
random variable N(A) is ID. It is well-known, see for example Feller (1968,

p. 290), that this implies that N(A) is compound Poisson distributed, i.e., that

N(A) f, +C2 + •• + %, (N(A) 0 if N 0), (31)

where £|, £2, • • • are independent and identically distributed discrete variables,
N is Poisson distributed with mean 5, and N is independent of the In order
to make the representation unique we assume that P{£t 0} 0.

For any discrete random variable N, its generating function GN (s) is given by

Gn{s) =f Then (31) can be written in the form

u(A{l -a)) e"(<rMs)-1), for |.s| < 1, (32)

where u(A( 1 - s)) follows from the representation of N(A) as a mixed Poisson

distribution, cf. Grandell (1995), and ea(6?(s)_1) from the representation as

a compound Poisson distribution. Since we assumed that 0} 0, we
have G^(0) 0. Thus we get

and

or

u(A) e a or a — log(u(A)) (33)

cv(G<f(s) - 1) log(u{A{l - s)))

log(u(Zl(l - S)))
G^{s) 1

log(u(A))

We will introduce an associate Poisson risk process X*, with the same premium
c as in X. The position of the claims is described by a Poisson process N* with
intensity

a* —
IogR^))

A A

The claim distribution F* is given by

OO

F*w Y,ptei k}FW(z)>
k=l
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and thus

OO

h*(r) + 1 £ fcX/lM + l)k +

or

/,.(,) P")
log(?i(Z\))

Notice that both a* and F* depend on A
Although the processes X and X* are different, the sequences {2f(A;Z\)}
and {X*(fcZ\)}^_Q have the same distribution. Thus

OO
k—0

3^(") *£(«) (35)

Since N* is a Poisson process (12) applies, i.e.,

F*(u)~C*e~Ru, where C* (36)
era*'(if.) — c

The Lundberg exponent in (36) is the positive solution of

c,= „V,'(,)=tifiA!S or 8(-nMr))c—^ 1.

Thus we have the same R for X and X*, cf. (17) and (22), which is "as it shall
be", cf. (35). Further a* ß* aß which follows from the construction of X*
or from a* ß* a* ßG'^ (1) and

a*h*'(r) _u\-A1<r))h'{r)
u(—Ah(r))

From (22) it follows that u(~Ah(R)) ecRA, and we get

C* QCYfJ, (37)~ -u'(-Ah(R))h'{R)e-cRA - c
'

where it may be noticed that u'(v) < 0 for all v.
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It follows from Lemma 1 that

P*(u + cA) < P*A{u) PA{u) < P(v) <$A{u- cA)

P*a{U~CA) <<P*(u- CA)

for u > cA and that, cf. (23),

c-cRAc* < CA < C<C < ecRACA < ecRAC* (38)

or, using Proposition 1,

e-(> +e)r»c* <CA<C<C < e(]+e^r»CA < e{x+e)r"C* (39)

Naturally we are better off if we can calculate CA C*A, but (38) and (39)
give bounds which only require C*. We know only one case where CA can be

simply calculated, and will consider that case in the continuation of Example
2.

We can now apply the diffusion approximation to X*, i.e., we consider R*D

2pft*/(a* + //* By differentiation of (34) we find - not very surprisingly -
that R*d Rp. Then it follows, cf. Grandell (1991, p. 17), that

r < (40)
Z\/r2(T^ + a(cr2 + /r2)

Remark 3. We will, by a counterexample, show that (40) does not hold in

general. Consider the case

P{Zk 1} 1 =» h(r) cr — I

P{Lk=0}=P{Lk=2}=1- => u(v) l-(\ + e~2v),

where, of course, Lk is not infinitely divisible. We have // 1, a1 0, a 1,

and o] 1, and thus

2 Q
n d =:

Let

R° A + r

f(r,A) d= i(l + cxp{2Z\(er - l)})R-('+e)^
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From (22) it follows that R is the positive solution of/(?•, A) 1. Ifwe can show
that f(Rp,A) < 1, it follows that RD < R,, which would be a contradiction to
(40). For d->oowe have R,D ~ 2g/A and thus

f(RD, A) ~ l-(\ + exp ^2A • e-20 +e)e I(1 + e4<?)e"2(1 +e)e

Choosing, for example, g 1, we get

f(RD,A) ~ i( 1 + e4)e-4 1(1 + e"4) < 1.

Thus (40) does not hold in general. (Exact computations show that /(/?£>, A)
< 1 for A > 4.502.)

From the point of view of the diffusion approximation, the inequality (40) is

in the "wrong" direction. For our purpose it is in the "right" direction, since it
means that

cRA<rJtnA W+'tff?2 < j(41)zl/i2cr2 + a(a2 + p2) (JL

Formula (41) indicates that (38) is useful when aL is large. This is quite natural,
since then the (random) intensity is probably large in an interval [kA, (k + l)A)
where ruin occurs and it is rather probable that the risk process remains

negative until the end of that interval. If, on the other hand, aL is small, we are

"locally" close to the Poisson case, where we know that (38) is quite useless.

Notice that this does not necessarily imply that the risk process itself is close
to the Poisson case, since the natural measure of the variability is Aa\.
In view of Remark 1 and (41), the following proposition is not very surprising.

Proposition 4. Assume that Lk is infinitely divisible. Thenry < 2gc.fi/a2^, where

tq is given by (24).

Proof. By the assumption of infinite divisibility, it follows from (32) and (33)
that

u{v) expj-log(w(zl))^G^l - ^ - l^j
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where G^ is a generating function, depending on A, with G^(0) 0. Notice
that \og{u{A)) < 0. Thus rQ is the positive solution of

log(u(A)) (gs (l + J_) - l) - (1 + e)r 0,

independently of the choice of A.
Let Pj(A) P{£k j}, so that

G^(s) p{(A)s+p2{A)s2 + >p](A)s+ p2{A)s2 for ,s>0.

By similar arguments as in the proof of Proposition 1 it follows that 0 < 7(A),
where r(A) is the positive solution of

- log(u(Z\))^l + ~^jP\(A) + + -^J P2(a) - - (1 + ß)r

0. (42)

Using (32) again, we get

logu(/4(l - s))
l0gu(A) '

which, by routine differentiation, yields

a\ — r<> tn\ —
Au'(A) An

P] ^ u{A)log(u(A)) -log(u(Z\))

and

rIA) 'C"I01 d2S"(4)
I

A2"'(/1'2
P2(A) - G( (0) - +

2 s 2u(Z\) log(S(Z\)) 2u(A)2 log(u(Z\))

A2o\
—21og(u(Z\)) '

as A -> 0. Putting this into (42), it follows that r(0) =f lim^^r)/}) is the
solution of

raj
+ ^2 _ (^ + ^) 0.

Thus, r(0) 2ga2/a2L, and the proposition follows.



67

By considering the same case as in Remark 3, it is seen that Proposition 4 does

not hold in general.

Example 3 continued. The most important example of an infinitely divisible
structure distribution is certainly when U is F(7,/i). Recall that a 7//I. We
choose to parameterize with a and 7, which gives cr\ a2/7. Then E. is the
positive solution of

^ _ Aah{r)^
1
e-crA x or /)(r) _ e-crZ\/7j ^ (43)

which is eq. (35) in Ammeter (1948, p. 196).
We have u'(v) - ^(1 + -c*(l + and thus

u'{-Ah(R.)) -(*(1 - Anh^R)^j
-7-1

— c/?Zi(—7—1)/7 _ cIlA c.RA/~f

Thus (37) reduces to

oitcye cltA/'y
(J* _ urn-it- /44x

ali'(R) — ce~cIiA/t

Now we simplify further and let the claims be exponentially distributed with
mean p. Then h(r) pr/( 1 — pr) and h'(r) p/{ 1 — pr)2 and (44) leads to

c* g(l -pE)2e~cRAh
1 - (1 + <?)(1 - pE)2e-cRAh

or, equivalently,

c* g(l - pR){ 1 - (1 + Aa/-y)pR.) r45,
1 _ (i + e)(i _ /ijR)(i _ (i + Aah)pR)

'

Ammeter (1948, p. 196) considered this case for p 1, a 1, A 1000,

7 100, and u 1000. Further he compared with the Poisson case. We
will consider the same case, but restrict ourselves to g 10%. Notice that

1000 0.01 10.



68

From Table 1 and (27) we get r0 17.6134. This yields « 2.6 108,

and thus (39) is useless in this case. Solving (43) we get R — 0.01482 which

yields ecRA fa 1.2 107, and thus also (38) is useless.

Let us therefore consider the ruin probability for the related Poisson process
N*. Recall that the only thing we now can say about the Ammeter process is

that &a(u) < &*(u). From (36) and (45) we get

0.1(1 - if)(l - llR)e-Ä« .(UM«*,*~ 1-1.1(1-Ä)(l-llfl)
=a8875<

and thus ^*(1000) « 3.3 • 10-7. In Table 4 given by Ammeter (1948. p. 196),
values of «^^(lOOO) are given. Ammeter uses a relation, related to (18),
between FA(v) and F*(v). To the best of our understanding, that relation is

not correct. We will return to this in Remark 4 below.
In the Poisson case, or when a^L 0, we have by (11) and (18), R 0.09091,

^(lOOO) 3.0-10~40 and "^^(lOOO) « 3.3 10-41. Thus we are far from that
case.

Example 2 continued. Let now both U and F be exponential distributions,
with means a and p respectively. Then it follows from (45), with 7 1, that

c*
£>(1 - /'•#)(! ~ (1 + Aa)pR)

1 - (1 + ß)(l - pR){ 1 - (1 + Aa)pR)
'

In Grandell (1995) it is shown that

Fa(u) (1 - (1 + aA)p.R)e~Rn (46)

and it follows that

(1 - (1 + aA)pR).

The main idea in the proof of (46) is to use the fact that Zk is exponentially
distributed given that Zk > 0. By "looking" at the risk process at those epochs

kA where Zk > 0, (46) follows from (2). This implies that we consider a

different inter-occurrence time distribution than given by (14).
In this case R is the positive solution of

apAr (1 - /xr)(l - e0+e)aßAr^ ^
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and it is easy to lealize, cf. (26), that apAR -> r0 as A —> oo. Thus

as A —> oo. Furthei, cf (41), since aL — a

cRdA —> 2g(l + g) as A —> oo (48)

As a mattei of curiosity we may notice that C^cc/?zi —> 1 as A —> oo.
In Table 2 we considei the case a p 1 The case "2\ oo" refers to the
limits (47) and (48), l e "R oo" r0

Table 2 Illustiation of bounds for exponentially distributed intensity
and claims

e zi R A e-cRAr* ecRACA erRAc* erR da

10% 1 0 060282 0 8472 0 8792 0 9296 0 9676 1 0687 1 0761

10% 10 0148162 0 7S40 0 8270 0 9852 1 0446 1 1770 1 2012

10% 100 0 172884 0 727S 0 8254 0 9982 1 0642 1 2095 1 2407

10% 1000 0175804 0 7244 0 8240 0 9998 1 0664 1 2133 1 2455

10% oo 0176124 0 7240 0 8229 1 0000 1 0667 1 2138 1 2461

20% 1 0110200 0 7227 0 7794 0 8897 0 9430 1 1415 1 1735

20% 10 0 266005 0 1762 0 7074 0 9734 1 0909 1 3760 1 4918

20% 100 0 208212 0S287 0 6887 0 9969 1 1287 1 4475 1 6009

20 % 1000 0 212142 0S244 0 6865 0 9997 1 1331 1 4561 1 6145

20 % CO 0 212698 0 S229 0 6862 1 0000 1 1335 1 4571 1 6161

20% 1 01S217S 0 6224 0 6957 0 8478 0 9244 1 2188 1 2969

20% 10 0 261112 0 44S2 0 6027 0 9639 1 1388 1 5992 1 9155

20% 100 0 41S920 0 4048 0 5799 0 9958 1 1937 1 7172 2 1484

20% 1000 0 422255 0 4002 0 5772 0 9996 1 2000 1 7314 2 1781

20% oo 0 422970 0 2998 0 5770 1 0000 1 2007 1 7330 2 1815

The intention of presenting Table 2 is to illustrate first (38) and second (40)
and (41). Certainly this example suits the methods used very well, and hence
far leaching conclusions ought not to be drawn It does, however, seem as if
the unique possibility to calculate CA does not improve the bounds drastically.
Further it seems that the diffusion approximation Rp works reasonably well
even for g as large as 30%. The critical "parameter" seems to be op, and we
believe that the above conclusions hold reasonably generally for « 1.
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Remark 4. In the end of Example 3, we mentioned a relation between &A{v)
and "ft* (?;), used by Ammeter. Suppose that /r a 1. Ammeter (1948, p. 195)

states, as if it was a well-known fact, that

in the Poisson case. In Laurin (1930, p. Ill), which is one of Ammeter's

general references to risk theory, (49) is mentioned after the comment "We
shall only give the final result which is suggested by Lundberg's discussion

on this subject:" If we compare with (18), it follows that (49) holds as an

approximation, for large values of A. Therefore we believe (49) was motivated
by a heuristic argument.
In the case where both U and F are exponential distributions it follows from
Example 2 that

which is not in agreement with (49). Neither (50) is in agreement with (49) nor
(18) for large values of A. This is, however, no contradiction, since C* does

depend on A.
This is most certainly not to be regarded as a severe criticism of Ammeter's
approach. In fact, Ammeter proposed e~Ru as an approximation of FA(v),
which means - see (5) - that he was "on the safe side".
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Zusammenfassung

Wii untetsuchen verschiedene Fiagen im Zusammenhang mit der Ruinwahrscheinhchkeit, falls
die Schäden gemäss einem Ammeter-Prozess emtieten Der Ammeter-Prozess ist ein sehr

spezieller Cox-Prozess, der aus unabhängigen gemischten Poisson-Prozessen aufgebaut wird

Summary

We considei certain questions related to the rum probability, when the claims occur accoiding to
an Ammetei process. The Ammeter process is a very special Cox process, built up by independent
mixed Poisson processes.

Resume

Nous traitons de la piobabilite de ruine lorsque les simstres suiviennent selon un processus
d'Ammcter. Ce dernier est un cas tres particuher des processus de Cox, ä savoir celui genere
par des processus de Poisson mixtes et independants.
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