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WERNER HURLIMANN, Winterthur

Transforming, ordering and rating risks

Introduction

Due to the seminal work by Rothschild and Stiglitz (1970/71/72), the theory
of stochastic orderings and their applications has seen a growing interest
and a tremendous development during the last two decades. The main
results obtained so far in this area have been collected by Shaked and
Shanthikumar (1994). On the other side Mosler and Scarsini (1993) have
compiled an extensive classified bibliography.

In actuarial science the corresponding development starts with the landmark
Biihlmann et al. (1977) and owes much to Goovaerts et al. (1984/90), the
two thesis by Van Heerwaarden (1991) and Kling (1993), and the new
monograph by Kaas et al. (1994). The subject is now established and the
potential for new questions and applications has not yet been fully explored.
The present paper deals with examples of “risk measures”, which are
studied from an axiomatic point of view in Ramsay (1993). As observed
by Garrido (1993), p. 340, two different concepts must be distinguished.
The “absolute” risk measure takes into account the “variability” of a
risk, or the “level of risk” inherent in it, and, once defined (which is an
open problem), the loading of an insurance premium is a function of this
quantity. The second “relative” risk measure considers riskiness relative
to another reference scale. For example the loss ratio risk leads to the
expected loss ratio as relative risk measure. Our search of a sound “risk
measure” points therefore towards two directions. In a first part (Sections
1 to 4) new properties and actuarial applications of a stable retention ratio
and stable return index, “relative” risk measures introduced previously in
Hirlimann (1992), are presented. The second part (Section 5 and 6) contains
a further analysis of two “absolute” risk measures recently considered by
the author. Though no direct connections between the two parts are given,
they both are strongly based on unifying ordering properties of probabilistic
real functionals (or transformed random variables), namely preservation of
stochastic dominance and stop-loss order. A more detailed outline follows.
In Section 1 the definition of loss ratio ordering is recalled and shown
to be a generalization of the k-ordering by Heilmann (1985/36), which
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refers in particular to Fischburn (1984). In Section 2 known properties
of two “relative” risk measures, derived from the loss ratio ordering, are
reviewed. Then in Section 3 the loss ratio orderings are interpreted in
terms of stochastic dominance relations between transformed risks using
the method by Heilmann (1986). The main part of actuarial interest in
“relative” risk measures is found in Section 4, where classical applications
in non-life (rating large claims in (re)insurance) and financial option pricing
are presented. Example 4.1 shows the existence of infinitely many arbitrarily
stop-loss ordered Pareto risks, which are all equal in total return and stable
return order. For a special Dutch premium principle the non-existence of
loss ratio ordered risks with equal mean of risks is settled in Proposition
4.1. It is shown in Example 4.3 that stable retention ratios and prices for
lognormal risks with equal mean are preserved under stop-loss order. This
provides an elementary proof of the fact that a rate of return on financial
assets (by constant risk-free rate) has to increase by increasing volatility
in the classical Black-Scholes option pricing model. Then in Example 4.4
Pareto risks with equal mean, which are less dangerous in stop-loss order
and pricing order, are shown to possess higher stable return indices and
stable retention ratios.

The problem of defining an adequate “absolute” risk measure is closely
related to the theory of premium calculation principles, and no ultimate
answer has been found so far. In this respect Section 5 reports of a (relative)
good news, which finds by the way a further interesting financial application
in “portfolio insurance” (see Section 6 in Hiirlimann (1995a)). As shown in
Example 6.1, the merit of the generalized Dutch premium principle must
be appreciated with care: the premiums of long tailed risks can eventually
not be discriminated from the premiums of other risks using this pricing
principle. In our opinion the validity of a sound “absolute” risk measure
or/and premium calculation principle must besides desirable properties
specify the necessarily restricted space of risks on which it should be applied.
As an example a second degree stop-loss order preserving splitting premium
principle for an insurance economic environment of (positive) risks with
fixed mean, variance and net stop-loss premium to a given deductible, is
constructed. This solves a question suggested to us by Briys (1990), p. 37.
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1 A loss ratio ordering based on stop-loss dominance

In the present paper X is a random variable, which represents a risk from
life or non-life insurance, or from finance. To a risk X one associates a
risk price H[X| using a pricing calculation principle H[-]. The use of such
pricing principles in insurance risk theory, where they are called premium
calculation principles, is well-known. In a finance context their use is more
recent. Besides the risk itself we will consider the loss ratio transformed
random variable LH(X) = X/H[X] and the return ratio transformed
random variable GH[X]| =1 - LH(X).

Given loss ratio transforms LH (X), LH(Y) of risks X,Y, it is possible to
define a loss ratio ordering, denoted < g, by the relation

X<pgY & LH(X)= <g LH(Y) = — (1.1)

X
HIX] H[Y]’
where < denotes the stop-loss order relation. Loss ratio ordering, or
shortly LH-ordering, has been previously introduced by the author (1992)
and is in fact a generalization of the k-ordering by Heilmann (1985), Section
4, and Heilmann (1986), Section 3.2, obtained in the special case of the mean
value principle H[X| = E[X]:

X<ptY & X<igY
X Y

(1.2)
The k-ordering preserves the total order based on the comparison of the
coefficients of variation of different risks:

Var < K[Y] = \/Var[Y ' (13)

X<, Y = k[X]= “E¥l

Therefore it preserves also the total premium order based on the com-
parison of “Karlsruhe” premiums K[X] = (1 + k[X]?)E[X] for risks with
equal means. The significance of the latter premiums in all-finance risk the-
ory (= actuarial and financial risk theory) has been studied by the author
(1994a/95a/95b). “Karlsruhe” premiums can be derived from the “loss prin-
ciple” of Heilmann (1988).

Pricing calculation principles should in principle satisfy the mean exceeding
property H[X] > E[X] (e.g. non-ruin or risk-profit arguments). For the
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purpose of comparing loss ratios, it seems that the natural LH-ordering
generalization of the k-ordering is more promising.

However all its useful properties have not yet been clarified. Furthermore
its potential applications have not yet been sufficiently demonstrated.

2 Review of known properties of LH-ordering

In Hirlimann (1992) the LH-ordering has been introduced in connection
with two “relative” risk measures, which should be useful when comparing
loss ratios. The first one is the H-stable retention ratio, which can be
obtained as fixed point BH = BH|[X] of the following “stop-loss” equation

with 77, x)(d) = E[(LH(X) — d)4], d € R, the stop-loss transform of
the loss ratio transform. Its computation requires usually the knowledge
of the probability distribution of the risk. By incomplete information, for
example when only mean and variance are available, the simpler H-stable
return index, which as a consequence of the inequality of Bowers (1969), is
calculated as follows:

_ Var[GH(X)] 1 Ver|X]
SHIX) = “Figata] = A1X] T - B

(2.2)

This index measures per unit of risk price the relative variability of the
risk with respect to the risk profit loading. The LH-ordering preserves the
total order induced by stable retention ratios, called total LH-return order
(author (1992), Theorem 1):

X <pgY = BH[X]<BH[Y]. (2.3)

For this reason it may be viewed as a stochastic generalization of the
obvious total order concept of comparing stable retention ratios. On the
other side the total order induced by the stable return index, called total
stable LH-return order, is only preserved under the stronger loss ratio
ordering with equal means, denoted by <r g —, which is defined by the
relations

X <LH,= Y LH(X) <sl,= LH(Y)
& LH(X)<g LH(Y) and E[LH(X)] = E[LH(Y)] (2.4)



217

This follows from the author (1992), Theorem 2:
X <LH,= Y = 5H[X] < 5H[Y] . (2.5)

Note that the (LH,=)-ordering is also a generalization of the k-ordering.
This is immediate in view of the equivalence

E[Y]

ELH(X)|=E[LH(Y) & H[Y]= BIX| H[X], (2.6)
always fulfilled in case H[X] = E[X].
3 L H-ordering and stochastic dominance

As shown in Heilmann (1986), it is possible to interpret k-ordering in
terms of a stochastic dominance relation between transformed risks. The
proposed construction extends to the (LH,=)-ordering. Using the relation
Fruoo(r) = Fx(zH[X]) between distribution functions, one gets the
relation between stop-loss transforms:

WLH(X)(d):H[lX]~7TX(dH[X]), deR. (3.1)

For positive risks X > 0 consider now a transformed risk 7'(X) defined by
its distribution as follows:

mx(zH[X]) . TLH(X) (%)

With <; the usual stochastic dominance relation, one can formulate the
following characterization of (LH,=)-ordering.

Proposition 3.1. Let X,Y be positive risks, LH(X) the loss ratio transform
to the risk price H[X] and T'(X) the transformed risk defined by (3.2). Then
one has the equivalence

X<LH,1Y = LH(X) <sl,= LH(Y)
& T(X)<aT(Y), (3.3)

Note that by (2.6) the mean value principle H[X] = F[X] yields as special
case the characterization of the k-ordering obtained by Heilmann (1985/86).



218

An alternative similar characterization of LH-ordering is obtained as
follows. For positive risks X > 0, let F*(x) be the distribution function
of the transformed risk X* = X .- E[LH(X)]. Then one can define a
transformed risk S(X) with density function

fsx (@) = ﬁ (1- F*(@))
_ H[X) H[X]
“E[X]Z'(“FX("”'W))’ 54

and distribution function

1 &
Fgxy(@)=1- Eix] TEH(X) (m) : (3.5)

As a consequence one obtains the following characterization of LH-
ordering.

Proposition 3.2. Let X,Y be positive risks and S(X) the transformed risk
defined by (3.5). Under equal mean of risks E[X] = E[Y], the following
equivalences hold:

X<pgY & LHX)<gLHY) < S(X)<sSY). (3.6)

The existence of pairs of risks X, Y satisfying the equivalent conditions
(3.6) has the following intriguing consequence. The loss ratio stop-loss
order implies that E[LH(X)] < E[LH(Y)], which under equal mean of
risks E[X] = E[Y], implies the pricing ordering relation H[Y] < H[X]. On
the other side (3.6) implies by (2.3) the opposite return ordering relation
BH[X] < BH[Y]. Therefore it might theoretically be possible that risks with
lower risk prices leave to risk underwriters higher stable retention ratios.
However the existence of such pairs must be settled, and there are examples
which suggest their non-existence. Phenomena like this and similar ones are
studied in Section 4.

Setting ;1 = E[X]| = E[Y] and using the formula (3.1), the second decision
rule in (3.6) is seen to be equivalent to the inequality

-H|Y
{XD)’ uniformly for all z € [0, 00). (3.7)

L]
|

3
=

T8 |=I8

HIX] ™ 7y (
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In the special case of a mean preserving pricing principle with the property
E[X] = E[Y] implies H[X] = H[Y] (e.g. an expected value principle), the
(LH,=)-ordering is compatible with the ordinary stop-loss ordering with
equal means.

Corollary 3.1. Let X,Y be positive risks and suppose that E[X] = E[Y],
H[X] = H[Y]. Then the following equivalent conditions hold:

X<pg=Y & X<4-Y & LH(X)<g4-=LH(Y)
& T(X)<aT(Y). (3.8)

4 Ordering of risks and L H-ordering

In this Section the effect of ordering of risks between X and Y on
loss ratio ordering between LH(X) and LH(Y) and their induced total
order relations is exemplified. As classical applications we present non-
life insurance situations (rating large claims in reinsurance) and financial
situations (valuation of option prices in Black-Scholes model).

Similar results can be obtained for life insurance using the methods dis-
cussed in Kling (1993), Chapter 2. As Remark 4.2 suggests, it is even pos-
sible to imagine non-trivial applications in “pure” mathematics following
the mottoes “Purity in Applications” and “Applied Mathematics is Bad
Mathematics” discussed by Poston and Halmos in Steen (1981).

Example 4.1: stop-loss ordered Pareto risks equal in return and stable
return order

Consider risks with a distribution from a Pareto (A, «) family given by

A
Atz

(0%
F(LL‘):l—( ) , a>2 A>0, z>0. (4.1)

The mean, square of coefficient of variation and net stop-loss prices are
given by
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The convention is made that quantities for different risks X,Y are distin-
guished throughout using indices. For the special Karlsruhe pricing princi-
ple K[X] = (1+ k%(),u x, consider the (LH,=)-ordering. For two Pareto
risks X,Y the condition E[LK(X)] = E[LK(Y)] is fulfilled exactly when
kx = ky, that is ax = ay. By (3.1) (LH, =)-ordering depends upon the
sign of the following univariate function on [0, c0):

1

{H[X] - 7y (zH[Y])

—H[Y] -mx(xzH[X])}. (4.3)

In the particular case H = K, axy = ay = o, kx = ky = k, one has

fK(lka) B 1+1k2{wy;(3w) - WXL?X)}' &4

Setting f(z) = (1 + k?) - fK(lsz) one sees that in case ax = ay = a:

f(z) = Fy (zpy) — Fx(zpx) =0. (4.5)

Since f(0) = 0 one must have f(z) = 0 on [0, c0), which implies that X
and Y are equal in the (LK, =)-ordering. In particular they have identical
K-stable retention ratios and K-stable return indices. Using (2.2) one has

SK[X] = 6K[Y] = I“Il‘k? - ‘12“(2 — f) , (4.6)

and (2.1) shows that BK := BK[X]| = BK]|Y] is the following non-linear
fixed-point (when it exists):

1 fw—2 a—3 Ne=l
BK_i(oz—l) - (a—ZBK) ‘ 1

Whatever the parameter value A is, by fixed «, all Pareto risks are equal
in return and stable return order. However by Van Heerwaarden (1991),
p. 87, these Pareto risks are always stop-loss ordered according to the rule

X<qgY & Ax<)lAy. (4.8)
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This shows the existence of infinitely many arbitrarily stop-loss ordered
Pareto risks, which are all equal in total return and stable return order.
This result has a significant interpretation for the reinsurance of large claims
based on the Pareto model. It is easy to check that « is a deductible
invariant parameter, which means that the Pareto family is closed under
changes of the deductible (e.g. Daykin et al. (1994), Exercise 3.3.23). Since
the parameter A reflects the change in deductible, the above result says that
varying the deductible in a Pareto risk with fixed « changes its Karlsruhe
premium, but leaves invariant its K-stable retention ratio and K-stable
return index.

Example 4.2: non-existence of loss ratio ordered risks with equal mean of
risks

Consider the special pricing principle

H[X]=px +7x(ux), (4.9)

which has been considered in a finance context by the author (1991). In
forthcoming papers mentioned in the references, the author provides further
applications, generalizations and justifications for the use of this theoretical
pricing principle.

Proposition 4.1. Let X,Y be two risks with equal mean p, and let H be
the pricing principle defined by (4.9). Then the ordering relation X <; g Y
holds if and only if the risks are stop-loss ordered with equal means, that
is X <4 =Y, and the risk prices are equal, that is H[Y] = H[X].

Proof. From the comment following Proposition 3.2, loss ratio ordered risks
X <pg Y with equal mean of risks can only exist provided H[Y] < H[X],
that is my (u) < mx(n). Denote by bx = BH[X] the H-stable retention
ratio to the pricing principle (4.9). Applying (2.1) one sees that

__mx(p) 410
X @ R0

Since 7y (p) < mx(p) one must have by < bx. By (2.3) if the relation
X <pg Y holds, then necessarily 7y (1) = mx (), hence H[Y] = H[X].
Moreover X <4 — Y by (1.1). The converse follows immediately from the
definition (1.1) of LH-ordering.
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Example 4.3: stable retention ratios and prices for lognormal risks with
equal mean, which are preserved under stop-loss order.

Consider risks X with a distribution from a lognormal In N(u, o) family
given by

F(z) = N(l—“{—x}—_ﬁ) : (4.11)

o

where N(z) is the standard normal distribution. In the framework of the
Black-Scholes option pricing model, with initial asset prices standardized
to one unit, the one-year accumulated risk-free rate and option prices are
given by

r = E[X] = exp (u + %02> : (4.12)

C(d) = E[(X — d)4] = rw(lnig} + %a) - dN(lni?} - %g)

:m(ff;h@ —l—a) —dN(-’LM). (4.13)

g g

Given two different risks X, Y from this family, equal mean of risks implies
a constant risk-free rate and the relation

I
py = px +5(0% —o%). (4.14)

In this finance context the pricing principle (4.9) takes the form
1
H[X|=r+4Cx(r) :2TN(§JX> : (4.15)

Let us first clarify when the stop-loss order relation X < — Y holds.

Lemma 4.1. Lognormal distributions with equal mean increase in stop-loss
order with increasing volatility parameter.

Proof. Following Van Heerwaarden (1991), Section 6.4, to compare log-
normal distributions with equal mean r, substitute p = ln{r} — %02 in the
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lognormal density to obtain

o) = e { LB o g

Let us determine the sign changes of % f(z; o), or equivalently 3% In f(zx;0)
on (0,00). One has

x
a—ilnf(l? o) = %{ln{;}z - %az — 1}. (4.17)
Observe that
112
ln{x}z _ ln{—i—} , 0 <2z <1, is monotone decreasing (4.18)
In{x}?,  z>1, is monotone increasing.

It follows that the expression (4.17) has at most two sign changes on (0, co),
being a continuous function of z that equals the sum of a constant, a
non-decreasing function and a non-increasing function. The result follows
applying Theorem 6.3.1 in Van Heerwaarden (1991).

Denote by bx = BH|[X] the H-stable retention ratio to the pricing principle
(4.15). From (4.10) one knows that

Cx(r) (4.19)

by = ————— .
X r v ox(n)

Using Lemma 4.1 let us state a relevant characterization of the stable
retention ratio, which in particular holds in a classical option pricing context.

Proposition 4.2. For lognormal risks with equal mean and pricing principle
(4.15), the following conditions are equivalent:

X <gq-Y & BH[X]<BH[Y] & H[X]<H[Y] (4.20)

Example 4.4: Pareto risks with equal mean, which are less dangerous in
(sl,=)-order and pricing order, but with higher stable return indices and
stable retention ratios.
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Let us show that risks and their rating do not always behave like in
Proposition 4.2 of Example 4.3. Given two Pareto risks X,Y with equal
mean with a distribution (4.1), one knows from Van Heerwaarden (1991),
p. 87, that

ay — 1

X <g,=Y & Ay = ( ))\X and ax >ay >2. (4.21)

axy —

Since 1 + k2 = 2(3§—:;) one sees that kx < ky whenever X <y _ Y.

For Karlsruhe prices K[X] = (1 + kg{) - px with stable return indices
SK[X]=(1+ k%c)“l, it follows that (see also author (1992, Example 3)):

(X <q-Y < K[X|<K[Y]) = 6K[X]>6K[Y]. (4.22)

Furthermore from (4.7) one knows that the stable retention ratio by :=
BK[X] is zero of the function

fx(d)=d- %(O‘X _2) : (O‘X—_‘ZYX_I. (4.23)

aX—Zd

From (2.1) one sees that in general 0 < bx < 1 (assuming the natural mean
exceeding property H[X] > E[X]). In case ay < ax one has
ay — 2 < G == 2
ay —2d T ax —2d

forall 0 <d<1. (4.24)

It follows that fx(d) < fy(d) for all 0 < d < 1. But then the zeros of
fx, fy relate as bx > by, which shows the implication

X <g-Y = BEK[X]> BK[Y]. (4.25)

Remark 4.1. The practical meaning of the qualitatively opposite behaviour
of the stable retention ratio in Example 4.3 and 4.4 can be appreciated in
their proper context. Proposition 4.2, of use in option pricing, reflects the
fact that a rate of return on financial assets (by constant risk-free rate) has
to increase by increasing volatility. On the other side the relation (4.23), of
use in reinsurance of large claims, means that (by fixed mean) large claims
from a Pareto distribution with Karlsruhe prices, which are less dangerous
in stop-loss order, will provide a greater stable retention ratio on insurance
liabilities.
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Remark 4.2. Suppose given the situation of Example 4.3. A direct proof
based on (3.7) of the fact that X,Y cannot be LH-ordered when H[Y| #
H[X], as in Example 4.2, would require complicated and non-trivial an-
alytical calculations. Instead of this our indirect proof of Proposition 4.1
can be used to get an “ordering of risks” proof of the needed non-trivial
probabilistic inequality.

Corollary 4.1. Let X,Y be two lognormal distributed random variables with
equal means such that py — pux = %(U%( — 02,) > 0. Further let z(,~ be
defined by the condition

_ In{aoN(z0v)} - py _ InfaoN(30x)} — px

5 (4.26)
oy ox
Then one has the inequality
N(L
(30v) > N(y+oy) (4.27)

N(sox)  Ny+ox)’
where equality holds exactly when oy = ox.
Proof. Based on (4.15) and using (3.7) one has X <pp Y if and only if
N(zoy) _ Cy(aN(zov))
N(z0x) ~ Cx(2zN(30x))
This inequality is fulfilled for z = 0, and thus also for sufficiently small z > 0

by continuity. However since X,Y cannot be LH-ordered, one knows that
(4.28) cannot hold uniformly for all z > 0. To simplify notations set

, uniformly for all z > 0. (4.28)

a=N lox , B=N 1cry , (4.29)
2 2

and consider the function

f(z) = BCx (az) — aCx (Bz). (4.30)
Then the non-validity of (4.28) reflects the fact that the stationary point
f'(xg) = 0 yields a positive local minimum of f(z). Since C'%(z) =
N (ln{ﬂ}—x_“x) —1 one sees that f/(zy) = 0 exactly when the technical
condition (4.26) holds. Using the second formula in (4.13) it follows that

f(zo) =r{BN(y+0x)—aN(y+oy)} =0, (4.31)

which is the desired inequality.
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3 Ordering characterization of a generalized Dutch premium principle

In the present Section a generalized form of the Dutch premium principle
1s characterized by the property of no unjustified loading and order preser-
ving properties. The result allows for a mathematical classification of
some perfectly hedged bonus strategies such that the associated insurance
premiums are consistent with the required properties. In particular we fill
the gap (1995c), Proposition 3.1, and complete in a qualitative way the
results obtained previously (1994b).

The recent developments in Van Heerwaarden/Kaas (1992) and the author
(1994b) have led to the following meaningful two-parametric premium
principle:

HIX] = (1 3011 - 61)B{X] + J08(1X - B(X]]]

(5.1)

E[X]+6E[(BE[X]-X)4], 620, 0<8<1,
{E[XJ+9E[(XﬁE{X])+], 6>0, 621,

where X is a random variable such that (5.1) is well-defined. In the
mentioned papers it has been shown that this premium principle gives
no unjustified loading, that is H[c] = ¢ for any constant ¢ > 0, and
preserves stochastic dominance and stop-loss order provided 6 < 1. In fact
the stronger necessary and sufficient condition characterizes this attractive
premium principle.

Theorem S5.1. The following statements hold:
(a) The premium principle

H[X] = E[X] + 0E[(BE[X] - X)4], 6>0, 8>0, (5.2)

gives no unjustified loading, preserves stochastic dominance and stop-loss
orderifand only if 0 <6< 1,0<3<1.
(b) The premium principle

H[X]= E[X]+0E[(X - BE[X])+], 620, 5=0, (5.3)

gives no unjustified loading, preserves stochastic dominance and stop-loss
orderif and only if 0 <6 <1, 3> 1.
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Proof. It is immediately seen that the property of no unjustified loading
is fulfilled if and only if 7 < 1 (case (a)) respectively § > 1 (case
(b)). It has been shown by Van Heerwaarden/Kaas (1992) and the author
(1994c¢) that the condition € < 1 is sufficient to guarantee the stated order
preserving properties. To prove that § < 1 is a necessary condition, it suffices
to construct stochastically ordered random variables X <g Y such that
H[Y] < H[X] in case 6 > 1, that is stochastic dominance is not preserved.
In the following let ux = E[X] be the mean and F'x (z) = Pr(X < z) the
distribution of X. Recall that X <4 Y if Fx(z) > Fy (z) for all z.

Case (a): 6>1,0< <1

Consider a 3-atomic distribution of the form

0, z< pa,
P, 5CLS$<5MY;
F = 5.4
x(@) ¢, Bupy <z <pb, 5-4)
1, =z 2> pb,

and a 2-atomic distribution of the form
O: T < ﬁ”Y s
Fy(z)=44¢9 Bpy <z<pb, (5.5)
1, z= Bb.

One looks for parameter values 0 < p < ¢ <1, a < ux < py < b, which
imply F'x(z) > Fy (z) for all z, and such that

HY] - H[X] = (uy — px)(1 -6 +pp0) <0. (5.6)
The choice

O<p<min{9}6_—91,l}, p<qg<l,

a<(l-g)Bc<b=(1-¢gf)c, ¢>0, (5.7)

implies a < ux = pfa+ (1 —pBuy < py = (1 — )Bc < b, and (5.6) is
fulfilled.



228

Case (b): 0>1, 5 >1

Consider 2-atomic distributions of the form

0, =< pfa,
Fx(x) = {p, Ba <z < Buy, (5.8)
1; :EZ)G/J'Y:
0, =< (b,
1, z2=pPuy,

where one needs parameter values 0 < p < 1, a < px < b < py, which
imply F'x(x) > Fy (z) for all z, such that

H[Y] - H[X] = (py —px)(1 - (1 -p)po) <0. (5.10)

One shows that the choice

1
051——<p<1—-1— b=(1-(1-p)B)e, ¢>0,

B Bo’
a < min {c, E}i :g)ﬁﬁ) -pﬁc} ;

satisfies @ < pux < b < py and (5.10). This completes the proof of our
ordering characterization of the generalized Dutch premium principle.
The above Theorem can be applied to design bonus strategies with con-
sistent insurance premiums, and permits to complete some of our previous
results in this area. Let X be an insurance risk and assume the insurance
premium P = H[X] gives no unjustified loading and preserves stochas-
tic dominance and stop-loss order. The following class of perfectly hedged
bonus strategies has been introduced by the author (1994b). For the purpose
of this paper a bonus payment D = D[X] > 0 is said to be perfectly hedged
if there exists a constant d > 0 and a reinsurance form Z = Z[X|, which
may be a risk-exchange, such that with probability one:

(5.11)

d+Z=X+D. (5.12)
Then the insurance premium to the liability X + D is necessarily given by

P=H[X]=d+ H"[Z], (5.13)
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where H T[] is the premium principle of the reinsurer. For simplicity let us
assume that H[Z] = (1 + 0)E[Z], # > 0, is the expected value principle.
To illustrate consider first a bonus perfectly hedged by a pure stop-loss
cover. In this situation one has Z = (X — d)+, D = (d — X)4. Setting
d = ab[X], @ > 0, one finds that H[X] = aF[X]+ (1 + 0)E[(X — d)4]
gives no unjustified loading if one of the following two cases occur: case I
if 0 =0, a <1, case Il if § > 0, a = 1. In case I the identity (5.12)
yields H[X] = F[X] + E[(aE[X] — X)4] which is known to preserve the
required ordering properties. In case II the premium functional H[X] =
EX]|+ (1 +0)E[(X — E[X])+] preserves the ordering properties only if
¢ = 0. This fact, not shown in (1994b), is a direct consequence of the
above Theorem. It follows that the class of consistent bonus formulas
perfectly hedged by a pure stop-loss cover is characterized by # = 0 and
D = (aE[X] — X)4+, 0 < @ < 1. Since § = 0 leads to a “technical
ruin” of reinsurance companies, a bonus formula of this type cannot be
recommended in case decisions are based on the properties of no unjustified
loading and orderings preservation.

However in case 6 > 0 consistent bonus formulas D = g(aE[X ]| — X )4 can
be obtained using the perfect hedge

Z = g(X - aB[X])+ + (1 - 9)(X — E[X])
g(1-a)E[X], 0<a<l1,
{g(%gl)E[XL a1, (5.14)
)

=175 d=0+(-DBX].

9

A straightforward calculation shows that

[ }:{E[X]+9E[(QE[X]—X)+}, 0<a<l, 515

E[X]+0E[(X — aE[X])4], a>1.

Our Theorem implies that consistent bonus formulas of this type can only
occur for 0 < # < 1. For example, choosing g = 6/(1+6) > 1/2,0 > 1, leads
to inconsistent insurance premiums. Other remarks concerning this bonus
strategy are given by the author (1994b).
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6 Ordering properties of splitting premium principles

The author (1994a) has developed some interest in the following premium
calculation principle. Given is a random variable representing a risk, which
can be split up into two components X; = f(X), X; = g(X), transformed
random variables of X, such that X = X; + X,. In case a variance principle
H[-| = E[-]+ 6 Var[] is applied, and the components are insured separately,
the splitting risk premium needed to cover the risk X equals

H[X]=FE[X]+0Rx(f,9), (6.1)
where
Rx(f,g) = Var[f(X)] + Var[g(X)] (6.2)

is called the total variance splitting risk of the insurance risk X. It is
well-known that many of the common premium calculation principles,
for example the variance and the standard deviation principle, do not
preserve stochastic dominance, and they preserve stop-loss order only by
equal means (e.g. Van Heerwaarden (1991), Section 8.3). It follows that
these premium principles are inconsistent with the preferences of risk
averse decision makers with an arbitrary non-decreasing utility function
(e.g. Goovaerts et al. (1990)). The same disadvantage is shared by the above
splitting premium principle.

Proposition 6.1. Let X be a risk and let f(x), g(z) be two differentiable real
functions such that f(z) + g(z) = x. Then the splitting premium principle
H[X] = E[X]+0Rx(f,g) does not preserve stochastic dominance.

Proof. One has to show that there exists two stochastically ordered risks
X <s Y such that H[Y] < H[X]. Let Y = ¢ > 0 be a constant
degenerate risk and X a diatomic risk with support {0,c} such that 0 < p =
Pr(X=c¢)<1,g=1—p="Pr(X =0). Then one has X < Y, E[Y] =¢,
E[X] = ¢p, and Var[f(X)] = pg{f(c) - £(0)}?, Var[g(X)] = pg{g(c) — g(0)}*.
Since f(x)+ g(z) =  one has g(c) — g(0) = ¢ — {f(c) — f(0)}. Furthermore
by the mean value principle of real analysis, there exists ¢y € (0,¢) such
that f(c) — f(0) = f’(cp)c. After straightforward calculation one gets
HY] — H[X] = cq{1 — cpfAg}, with Ay = f'(co)? + {1 — f'(c)}*> > 0.
Therefore any choice ¢ > (pfAg) ™! does the job.
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Despite the mentioned disadvantage, a splitting premium principle might
nevertheless be useful in some specific insurance economy of risk-averse
agents. As an illustration let us construct a second degree stop-loss order
preserving splitting premium principle for an economic environment of
(positive) risks with fixed mean p, variance o2 and net stop-loss premium
m(d) to a given deductible d. This particular problem has been suggested
to us by Briys (1990), p. 37, which states that no application of this kind
seems to exist in the literature on microeconomic theory of the demand
of insurance. Indeed it is known that a second degree stop-loss order
preserving functional is consistent with the common preferences of a group
of decision makers with a decreasing risk aversion (criterion of Whitmore
(1970)). For a proof consult for example the new monograph by Kaas
et al. (1994), Theorem 2.1 in chapter V, or Van Heerwaarden (1991),
chapter 5. In practice this criterion is useful because larger (re)insurers tend
to charge smaller (re)insurance premiums, in accordance with a decreasing
risk aversion with wealth (e.g. Van Heerwaarden (1991), p. 112).

Example 6.1: A lincar combination of proportional and stop-loss reinsur-
ance defines a two-component splitting of risks with

fl@)=r-(z-(z-d)+), (63)
gle) =1 —=r)-z+r-(x—d+, 6.4

where r is the proportional retention and d the stop-loss deductible. Setting
n(d) = B[(X—d) 4], #(d) = E[(d—X)+] = d—p-+7(d), m(d) = E[(X -d)3],
one gets after calculation

Rx(f,9) = {r* + (1 = r)2}o? + 2r(1 = 2r)n(d)7(d)
+2r(1 — r){my(d) — 7(d)?}. (6.5)

In view of this formula it is obvious that the splitting premium principle
H[X]| = E[X]+60Rx/(f,qg) preserves the stop-loss order of degree two, that
is X < (2) Y implies H[X] < H[Y], providing rating of risks is restricted to
the space of random variables

D(p, 0, m(d)) ,
.= {X : E[X] = p, Var[X] = 0%, E[(X — d)4] = 7(d)}, (6.6)
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which represents a set of risks with fixed mean, variance and net stop-
loss premium. In this respect it is interesting to mention that there exists
an extremal diatomic distribution which maximizes the second order stop-
loss moment m(d) over the space of risks D(u, o, 7(d)), a fact which finds
herewith a further application. This result has been discovered by Schmitter
(1993) (see author (1994c) and Schmitter (1995)).

The actuarial importance of the discussed issue is best illustrated using our
previous simple example.

Example 6.1 (continued): rating long tailed risks
Let X be a compound geometric exponential claim with tail distribution

Fx(z) = aexp{~5}, ¢ > 0,0 <a <1, 4 >0, and let ¥ be a Pareto

claim with Fy (z) = (2££)™7, z > 0, @ > 0, ¥ > 2. The following risk

characteristics are calculated:

px =af, 0% =a2-a)f?,

6.7
x@=asen{ -4}, mx@=zepen{-5}. 7
_ a2 va?
S S s ) 638)
g 71 242 a \1-2
Ty (d) :“Y(chtd) , my(d) = (7_1)(7_2)(a+d) :

Now suppose both risks belong to the class of risks D(u, o, 7(d)), which is
the case provided the parameters satisfy the following relations:

o=l p=% 32(7_1)1ﬂ{azd}- (6.9)

If risk premiums are set according to a mean-variance principle or a ge-
neralized Dutch premium principle (5.1), which take into account only y, o
or u, 7 (d), then both risks will have the same risk premium. However it is
felt that most (re)insurers would assign to Y a higher premium, because a
Pareto distribution generates a longer right tail. Relying only on the risk
characteristics yu, o, w(d) implies that an actuary will tend to overprice X
and underprice Y. To discriminate between both prices a more appropriate
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premium principle must be chosen. As an example our simple splitting
premium principle will do. Indeed in case X,Y € D(u, o, n(d)), one has

m x(d) = (72_“‘2%((1) = (f‘%j))w(@ — my(d), d>0,(6.10)

which implies that H[X] < H[Y].
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Summary

The present paper contributes to the actuarial subjet of “risk measures” as defined in Ramsay
(1993) and the subsequent Discussion. Two “relative” risk measures, derived previously by
the author from a loss ratio ordering, are reconsidered in the light of some new insight and
applications. It is observed that the loss ratio ordering is a generalization of the k-ordering
by Heilmann (1985/86). Then loss ratio orderings are interpreted in terms of stochastic
dominance relations between transformed risks. Several examples of central interest in non-
life (rating large claims in reinsurance) and option pricing in the Black-Scholes model are
presented. Concerning “absolute” risk measures and their associated premium loadings, the
generalized Dutch premium principle is characterized by the properties of no unjustified
loading and stop-loss order preservation. This result allows for a mathematical classification
of some perfectly hedged bonus strategies. Finally an example of a second degree stop-loss
order preserving splitting premium principle is constructed for the purpose of solving a
question suggested by Briys (1990).

Zusammenfassung

Die vorliegende Arbeit liefert einen Beitrag zum Thema “Risikomasse” in der Ver-
sicherungswissenschaft, wie es in Ramsay (1993) und der anschliessenden Diskussion definiert
wird. Zwei “relative” Risikomasse, die der Autor von einer Schadensatz-Ordnung abgeleitet
hat, werden im Licht neuer Einsicht und Anwendungen nochmals betrachtet. Es wird fest-
gestellt, dass die Schadensatz-Ordnung eine Verallgemeinerung der k-Ordnung von Heilmann
(1985/86) ist. Anschliessend werden Schadensatz-Ordnungen mit Hilfe von stochastischen
Dominanzrelationen zwischen transformierten Risiken interpretiert. Mehrere Beispiele von
zentraler Bedeutung in der Nicht-Lebensversicherung (Tarifierung von Grossschidden in der
Riickversicherung) und in der Optionspreistheorie von Black-Scholes werden vorgestellt. Im
Zusammenhang mit “absoluten” Risikomassen und ihre zugeordnenten Sicherheitszuschlige,
wird das verallgemeinerte Dutch Prdmienprinzip durch folgende Eigenschaften charakte-
risiert. Ein Pramienprinzip soll keinen unbegriindeten Sicherheitszuschlag enthalten und die
Stop-loss Ordnung erhalten. Dieses Resultat erlaubt es, eine mathematische Klassifizierung
von einigen perfekt abgesicherten Bonus Strategien zu betrachten. Zum Schluss wird ein
Beispiel eines Pramienprinzips konstruiert, das die Stop-Loss Ordnung zweiten Grades erhilt.
Dies 16st eine Fragestellung von Briys (1990).

Résumé

Le présent travail fournit une contribution au sujet actuariel des “mesures du risque” comme
définies dans Ramsay (1993) et la Discussion qui suit. Deux mesures du risque “relatives”,
dérivées précédemment par l'auteur a I'aide d’une relation d’ordre sur taux de sinistre, sont
inspectées par rapport a de nouvelles applications. On observe que la relation d’ordre sur
taux de sinistre est une généralisation de la relation k-ordre par Heilmann (1985/86). Ensuite
on interpréte des relations d’ordre sur taux de sinistre a I'aide de relations de dominance
stochastique entre risques transformés. Plusieurs exemples d’un intérét primordial pour
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I’assurance non-vie (tarification des grands sinistres en réassurance) et le modele de Black-
Scholes en théorie des options sont présentés. En ce qui concerne les mesures du risque
“absolues” et leurs primes majorées correspondantes, on caractérise le principe de calcul des
primes Dutch généralisé a I'aide des propriétés suivantes. Un principe de calcul des primes
ne doit pas contenir de majoration non justifiée et préserver la relation d’ordre stop-loss.
Ce résultat permet de considérer une classification mathématique de quelques stratégies
bonus parfaitement couvertes. Finalement on construit un principe de calcul des primes qui

préserve la relation d’ordre stop-loss du deuxieme degré. Ceci permet de répondre & une
question de Briys (1990).
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