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B. Wissenschaftliche Mitteilungen

Werner Hürlimann, Zurich

Optimization of a Chain of Excess-of-Loss Reinsurance Layers
with Aggregate Stop-Loss Limits

1 Introduction

Excess-of-loss reinsurance is one of the most often encountered non-proportional
reinsurance contract in practice. In most situations, these treaties are subject to
various constraints like reinstatements, annual aggregate deductibles, etc.

In several common non-life insurance risk categories like Motor Third Party
Liability (MTPL), the original risk is subdivided into a retained part and several
excess-of-loss reinsurance layers. Under an adverse development of the number
of claims in a given reinsurance layer, the liability payment can be rather large
and exceed the economic capital foreseen to cover such layers. The mentioned
financial problem could be solved using paid reinstatements. However, at least two
difficulties remain. The pricing of excess-of-loss reinsurance with reinstatements
is not a trivial task (e.g. Hiirlimann(20()5)), and the optimal choice of the required
number of reinstatements must be discussed. Instead of reinstatements, a better
economical way might be to limit the aggregate claims of a reinsurance layer and
transfer the corresponding stop-loss risk to the reinsurance market or any other
third party.
In the present study, we consider a chain of excess-of-loss layers with given
deductibles, each with an aggregate stop-loss limit. Given the structure of the
excess-of-loss deductibles of these layers, our aim is the algorithmic numerical
evaluation of uniquely defined stop-loss limits, which are optimal in the following
sense. We look at the expected cost of the, total retained risk of a fixed number of
layers and minimize this quantity. Simultaneously, we look at the maximum cost
of the total retained risk of the same number of layers and limit this quantity to
the value-at-risk of the stop-loss risk of the highest layer. Pricing the transferred
stop-loss risk according to some specific quantile premium calculation principle,
uniquely defined optimal stop-loss limits are obtained. It turns out that the optimal
stop-loss limits are equal to the unexpected losses of the stop-loss risks of the
layers under the value-at-risk measure. The considered family of quantile premium
principles is in so far flexible as it allows different applications. For example, it
may be used to design optimal risk structures for corporate clients or it may
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be used in solvency testing for regulatory purposes (Swiss Solvency Test for
example).

To determine in a fast way numerical stable values of the optimal stop-loss
limits in practice, we use analytical approximations of the distributions of the

layer risks. We notice that solving the optimal stop-loss limit equations through
the application of a Monte Carlo simulation method requires usually very targe
sample sizes for excess-of-loss layers, whose quantile stop-loss premiums are
based on high confidence levels, or quite advanced resampling techniques, which

go beyond the scope of practical needs.

The paper is organized as follows. Section 2 introduces the considered chain of
excess-of-loss reinsurance together with appropriately defined notations. Section 3

presents the optimal stop-loss limit equations. The approximate optimal stop-loss
limits are obtained in Section 4 under approximations of the aggregate claims
distributions through gamma distributions. The usual approach from the standard
literature on risk theory is applied to the lowest retained layer risk. For the

remaining excess-of-loss layers, we propose to approximate the distribution of
the claim size through a combined four parameter exponential Pareto distribution.
This choice is analytically tractable and fits real data quite well, at least for
the data sets used in our practical work. Moreover, it is in line with the long-
year tradition of using Pareto distributions in practice and it is consistent with
the theoretical results from Extreme Value Theory. Finally, Section 5 presents
a numerical example, which is based on a real-life portfolio of Property and

Liability Non-Life insurance risks.

2 Excess-of-loss reinsurance structure with aggregate stop-loss limits

In the framework of the classical co//ecdve mode/ of risk theory, the Aggregate
c/flims of a portfolio of insurance risks are described by the random variable

where the c/nim sizes X are independent and identically distributed and indepen-
dent from the random c/aiw number /V. It is assumed that the random variables

X; are non-negative.

An excess-o/-/oss or XL-reinsurance treaty with deducfib/e d on a portfolio of
risks covers for each claim X the excess ciaim size (X — cZ) |, < l,...,AL
In this setting, the Aggregate c/aims o/ fbe XL-reinsurance are described by the

(2.1)
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random variable denoted by

iV

X(d) £(y-d)+. (2.2)
i= I

In the present paper we assume that the portfolio of insurance risks is structured
in a chain of m + 1 XL-reinsurance layers. The deductibles defining the chain
are denoted by do 0 < d| < • • • < dfc < <4+i < • • < dm < d,„+i x>.

Since V; is non-negative, one notes that X(do) X. The risk of the A-th layer,
A m, is defined and denoted by

tv

Xfc,fc+, X (dfc) - X (dfe+i) £ {(y - 4)+ - (y " 4+i ),} • (2.3)
I

The risk of the 0-th layer represents the retained risk, which is not subject to a

transfer of risk, and is given by

/v iV

Xo.i =X-X(d,) X!{^-(^-d,)+} =X>in(y,d,). (2.4)
i=l i=l

The risk of the m-th layer represents an XL-reinsurance treaty with unlimited
capacity and is given by

AT

X,„,m+1 X(dm) £ (y, - d,„) + (2.5)
2 1

Generalizing the expression (2.4) the total risk up to the A;-th layer is defined and
denoted by

/V

x<u X - X (do {y - (y - -4.)+}
2=1

/V

y; min (y, dfc), A: 0, m+1. (2.6)
2=1

In particular, the extreme cases Xo,o 0 and Xo,m+i X are used for ease of
notation. Since the independence assumptions are preserved under the performed
transformations of the claim sizes, all the expressions (2.2) to (2.6) are again
collective models of risk theory.
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Table 2.1: excess-of-loss reinsurance structure with aggregate stop-loss limits

XL SI, Transferred SL
Layer deductible

Total retained risk
limit risk premium

3 f/,| oo Yi,3 + min {A i,4, L_i} L, (Y.4-L,),.
2 ^3 Y),2 + >nin (X2,3, L>} L2 (Vi.i - L>)

|

1 ^2 Xo,i + min {A'i,2, Li } LI Pi

0 di Xo,o + min { Xq,i Lo} Lo (A'o.i - Lo)
.|_

Po

In practice, one is interested in risk structures for which the risk of the fc-th layer
is limited to a fixed amount Lfc, fc 0, m, called 5top-/r«\v or SL-/f'mi7. The

remaining risk represents a stop-/o,v.v or SL-rems«rance treaty with /wth'lLa;, whose

liability is transferred to a reinsurer or any other third party and is described by the

random variable (Xfc^+i — ^ 0,Given a fixed XL-reinsurance

structure do 0 < r/| < • < c4 < dfc+i < • • • < d„, < dm+i oo, one is

interested in finding optima/ SX-Zim/ts with respect to some decision criterion. To

analyze this optimization problem, we will consider the total retained risk of the

first fc layers, which is described and denoted by

Ya Y (dfc,dfc+i, Lfc)

Y - Y (74) + min {Y (<4) - Y (r41 i La-}

Yo,a b min {Yfc.t I I, La:} *
fc 0,...,m. (2.7)

The transferred stop-loss risk of the fc-th layer is taken up by the reinsurance

market or a third party for a .yfop-/oss or ST-prem/iim calculated according to a

given premium calculation principle P [ ] and denoted by

Pfc F(4,4n,f) P[(Yfc,fc+i -ifc)+], A: 0,...,m. (2.8)

The considered risk structure is summarized in Table 2.1 for the situation m 4

encountered quite often in practice.

3 Optimal stop-loss limits for the quantile premium principle

In order to optimize the stop-loss limits by given XL deductible structure, we
consider the expected cost of the total retained risk of the first fc layers, which is
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given by

Cfc C(dfc,dfc+i,£fc)

— F F[min {Xk,fc+i> -La.-}] + Pfc

£?[Jfo,fc+i] + P[(Xfc,fc+i ~^fc)+]

- £7 [(**,*+! - Lit) fc 0, — m. (3.1)

In the following, the distribution function of a continuous random variable X is

denoted by F,v(x), its survival function by Fx(i) 1 — Fx(•'') and its a-quantile
by Q,y(o), 0 < a < I. The a-quantile of the transferred stop-loss risk of the
/r-th layer satisfies the equality

<?(**,*+,-£*)+ (") (Qx».*+, («) - ^fc) * 0,.... m. (3.2)

It is assumed that the SL premium of the fc-th layer is set according to the

following parametric family of a^-quantile premium calculation principles

A (£fc)

+ ?"• [Qxfc,fc+i (<**) ~ -^Xfc.fc+i (^fc)l-t- -
fc 0. (3.3)

where 7rx (a?) F [(X - a;)+] Fy(0 denotes the stop-loss transform
of the random variable X and the parameter r belongs to the interval (0, I]. In
particular, this pricing principle takes into account the fact that the SL premium
should be at least equal to the expected value of the SL risk. Let us mention
two important special cases. First, setting r 1, this principle is in view of
(3.2) interpreted as the usual percentile premium principle to the confidence level

afc. In this situation higher confidence levels are chosen for the higher layers.
In practice, higher layers are hit more infrequently and the return periods of
individual losses increase in the higher layers. This means that the payback periods
to fund higher layers also increase. Should the payback periods remain constant
for each layer, there is a need for setting higher loadings on higher layers. In
this situation, charging higher loadings is equivalent with increasing confidence
levels. For example, a plausible choice in the practical situation of Table 2.1 could
be ao 80%, ai 95%, a2 99%, «3 99.9%. This pricing principle has
been used in practice to settle an optimal risk structure for a corporate insurance
risk business. Empirically, the choice ao 80% yields premiums for the retained
risk, which are in the range of a standard deviation premium with an approximate
loading factor of 50%. Second, as in the Swiss Solvency Test (SST), an alternative
model is to charge only the cost-of-capital on the value-at-risk of the stop-loss
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risk, where the parameter r is the cost-of-capital rate, and is a chosen security
level, say 99%. This second pricing principle is in line with the new
developments in solvency testing used for regulatory purposes.

Inserting (3.3) into (3.1) the expected co.yt o/z/ze ZoZr;/ reZaz'ned /ivk o/z/ze /z'r.sZ fc

/oyers can be rewritten as

Cjt £ [Xo,jt+i]

+ '' ' (afc) - ifc - 7TXfc,fc (Lfc))
|.

fc 0, ,771 (3.4)

On the other side, it is also worthwhile to look at Z/ze ozorz'zzzzzzn cavZ o/Z/ze ZoZcz/

reZzzz'zzez/ rz'.yk o/Z/ze fzY.vZ fc /ayers, which is defined by

cr* /-A. + A
Lfc +'7TXfc,fc.H (ifc)

+ ' (Qx„„ (afe) - £* — 7T.Vfe.fc,, (£*))+ fc 0,..., to
(3.5)

Minimizing the expected cost under the restriction that the maximum cost remains
bounded by the value-at-risk of the stop-loss risk of the last layer yields uniquely
defined aggregate stop-loss limits for a given XL reinsurance deductible structure.
This is the main result of the present study.

Theorem 3.1 Gz'vezz z'.y « porz/b/z'o o/z'zzizzrance rz'.y/r.v sZnzcZzzree/ z'zz rz c/zarn o/'m + 1

XL-rez'/zyzzrazzce /rzyere wz'Z/z c/e<r/zzcZz7>/e.y r/o 0 < r/| < < r/fc < i i < <
f/„i < dm+i oo. /Z z'.y a.y.vzzzzzec/ z/zrzZ Z/ze /irk of Z/ze Az-Z/z /oyer z'.y /z'/rzz'Ze<r/ Zo rz

fLvez/ rzzzzozzzzZ czzze/ Z/z«Z Z/ze Zrany/e/rer/ .sZop-/«.y.y rz'.sL (X^+i - £&) + '-v /zn'eer/

accorc/z'zzg Zo Z/ze afc-gzzrzzzZz'/e premz'zzzzz ca/czz/aZz'ozz /zrz'zzczp/e (3.3), fc 0,..., m.

//' o«e zzzz'w'mz'ze.v Z/ze eA/zecZer/ crz.vZ of Z/ze ZczZrz/ reZrzzVzet/ z7.v/c (3.4) under Z/ze

re.yZrzcZz'o« z/zrzZ z/ze mrzAz'/zzzzm cosZ o/ Z/ze ZoZrz/ reZzzz'ned rzlsk (3.5) z'.y bounded by
Z/ze va/zze-aZ-rz'sA: o/ Z/ze .yZo/?-/o.y.s rzlvA: of Z/ze fc-Z/z /ezyez; Z/zezz Z/ze zzzzz'r/zze/v defined
o/zZzrrzc;/ .yZop-/oyj /z/rzz'Z.v .yezZz'.y/y Z/ze ee/zzoZz'on.y

+ xxfc.fc h (ifc) <2x*,,*+, (afc) •
A; 0,..., m. (3.6)

Proof Let us first minimize the expected cost function (3.4). By definition of
the stop-loss transform of a random variable X, its first derivative is given by
%;7rxC'') —F,v(:r). We distinguish between two cases.
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Cfltt? /.- I/fc + TTXfe.fc + i (ifc) < Qx*,*+, K)
Since r [— 1 + Fx* (£*;)] < 0. the expected cost function decreases

monotonically and it exceeds always the quantity i?[Jfo,fc+i ]. fc 0,...,to.
Cave 2: L* + ttx*,* (£*.) > <3x*,*+, ("fc)

In this situation the expected cost function always attains its minimum and it is

constantly equal to Spfo^+i], fc 0,..., m.

Now, let us look at the maximum cost function (3.5). Again, we distinguish
between two cases.

Ca«? /: Lfc 4- 7^,*+, (£fc) < Qx*,^, (<*fc)

One has (I — r) [I - ^x^-h C^fc)] > 0» hence the maximum cost
function increases monotonically but it satisfies always the required inequality
constraint C** < Qx*. *+, («A,), where equality is attained when r I.

Case 2: + 7Tx,,,_h (£*.) > Qx„+,(t*k)
Since ^ 1 - Fxj^(ik) > 0, the maximum cost function increases

monotonically and it satisfies the inequality C"* > Çx^+i («ft), A: 0, —to,
which implies that the required inequality constraint is not satisfied.

Combining all above cases yields the resulting optimal equations (3.6). 0

Remark 3.1 The proof shows the following fact. In the limiting case r 1 one
has CT* > <3x,,*+, (rtfc) and the equality is attained when (£it) <
Qxfc fe+i («*•)• In this situation, a more stringent optimization criterion consists
to minimize simultaneously the expected and the maximum cost of the total
retained risk of the first fc layers. Then the equations (3.6) yield the uniquely
defined optimal stop-loss limits of this alternative optimization problem, which
finds application to settle an optimal risk structure for an insurance risk business

(example in Section 5).

4 Optimal stop-loss limits for the XL layers

According to (2.3) the risk of the fc-th layer for fc 0,... ,m, which is required
to price the stop-loss risk of the A;-th layer, has a distribution from a collective
model of risk theory. For analytical purposes, the aggregate claims distribution
of 26^/t+i is approximated by a gamma distribution T (a^.,6^.) with parameters

a* 7'fc,L+i' where is the mean and c^+i is the

coefficient of variation of the aggregate claims 36^+1. It is important to note that
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for a Poisson claim number distribution with a sufficiently large expected number
of claims, the use of the gamma approximation to the aggregate claims distribution
with a gamma claim size distribution can be justified (see e.g. Hürlimann(2002)).
For the retained risk layer fc 0 these parameters are estimated applying the usual

approach from the standard literature on risk theory. For example, a compound
negative binomial model with truncated claims severities is appropriate. For A: > 0

another approach is applied.
A risk-manager or a reinsurer, which does not know the number and the size of
the original claims below the deductible (4, will not be able to analyze this risk
satisfactorily. Therefore, the collective model (2.3) is not appropriate to forecast
the stop-loss risk of the fc-th layer. Fortunately, it is possible to construct a

collective model for these layers on the basis of the collective model for the

original claims such that the model contains only random variables which are
observable for the reinsurer. This collective model is presented in Hess(2003) and

the related literature in Hess et al.( 1995), Franke and Macht(1995), Mack(1997)
and Schmidtf 1996/2002). In this setting, to estimate the parameters /7,A: + i and

cufc^.+ i of the Gamma approximation to the aggregate claims X^+i, we use

a compound Poisson model with exponential Pareto severities described by the

distribution

The use of (4.1) is justified as follows. It is well-known that the two-parameter
Pareto distribution is an appropriate distribution often used to fit large claims
distributions in reinsurance. This has been a first choice in the practice of rein-

surance for a long time (see e.g. Schmitter(1978), Schmitter and Bütikofer( 1997),

Doerr(1980), Schmutz and Doerr(1998)) and it is consistent with the theoretical
results from Extreme Value Theory (e.g. Embrechts et al.(1997)). Once the large
claims distribution has been fitted in an adequate way, one often observes a rather

poor fit in the lower tail of the distribution. To remedy for this disadvantage, it

appears attractive to fit the lower tail using another simple two-parameter analyt-
ical distribution, for example a translated exponential distribution, which is our
choice here. To fit (4.1) to claims data, we proceed in two steps as follows. In

a first step, one determines the threshold T and the Pareto index 7 minimizing
the chi-square statistic of the Pareto tail (f;) ' .r > T, over some plausible
set [T*i, Tj>] of threshold choices. In a second step, one determines the remain-

ing parameters a, /? such that the chi-square value and the Cramér-von Mises

A-statistic are sufficiently small.
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Based on the survival function F(x), the mean and coefficient of variation of the

aggregate claims of the A;-th layer with are given by the formulas (valid
for a: > T)

/tfc,A;+i £[Xfc,k+i] /i/v • {m(dk) - m (4+t)} (4.2)

m
f T — tv T

(x) £?[(r-®)+] exp I — I • —- (-) (4.3)

v/Var[Xk,k+,]
CVk,fc+| —

Mfc.k+l

Var[(y-4)+-(y-dk+,)+]
M/v 2 + • (4.4)2 I ^yv '

A«k,fc+|

Var[(y-4)+-(y-4+i)+]
m2(4) - m2(4+i) - 2 (4+i - 4) • ro(4+i)

- (m(4) - m(4+i))~, 4+1 > 4 > T\ (4.5)

m2(x) £[(r - x)+]
2 • T* / x \ (+ 2)

exp
f T — a 1 2 • T* /x\-(+ 2)

{ 0 J (7- I) (7-2) '(T) ' ^
To evaluate the mean and e-quantile of the stop-loss risk (24^+1 — £&) ^, we
use the formulas

£[(*fc,k+, - 4-)+]

/tfc,fc+i • {i — r(4 4, I + oit)}

— 4 • {1 - r (4 • Lfc, ttk)} (4.7)

<7fc(e) (S)

^ ^ ' k,fc I i
' PM-H • (4.8)

fc,fc+i

where T(6x;a) 'e '4 denotes the incomplete gamma function
and F~'(c;e) denotes the e-quantile of the "standardized" gamma distribution
F(c, 1) and (3.2) has been used for determining the quantile of the stop-loss risk.
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5 A numerical example

A main advantage of the proposed method is its full analytical tractability and

the fast and numerical stable evaluation of all required quantities. All calculations
can be done using any modern computer algebra system, for example the

software package MATHCAD 13 from Mathsoft Engineering & Education, Inc.

(www.mathsoft.com) will do.

Table 5.1 Optimal XL SL reinsurance structure (figures in units of millions)

Retained risk (0, c/|]

'<1 /'!), I "0,1 ""0,1 ho 7T0,1 (Li) Qo.i (8"%)

1.00 40.300 6.755 0.168 44.736 I.I 1 1 45.847

1.25 44.194 7.608 0.172 49.182 1.255 50.437

1.50 47.270 8.327 0.176 52.719 1.378 54.097

1.75 49.738 8.940 0.180 55.581 1.484 57.065

2.00 51.744 9.466 0.183 57.922 1.575 59.497

First layer (<i|,ch]

dt ^2 M 1,2 "1,2 <"1,2 h. 7T| ,2 (h|) QI,2 (95%)

1.00 10 3.693 3.796 1.028 11.079 0.203 11.282

1.25 10 3.046 3.569 1.172 10.014 0.206 10.220

1.50 10 2.583 3.367 1.303 9.152 0.208 9.360

1.75 10 2.233 3.184 1.426 8.421 0.208 8.629

2.00 10 1.957 3.016 1.540 7.781 0.206 7.987

1.00 15 3.936 4.457 1.132 12.632 0.253 12.885

1.25 15 3.289 4.250 1.293 11.582 0.261 11.843

1.50 15 2.826 4.067 1.439 10.726 0.267 10.993

1.75 15 2.476 3.901 1.576 9.992 0.271 10.263

2.00 15 2.200 3.749 1.704 9.346 0.273 9.619

1.00 25 4.073 4.932 1.211 14.518 0.323 14.841

1.25 25 3.425 4.739 1.384 13.456 0.339 13.795

1.50 25 2.963 4.568 1.542 12.573 0.351 12.924

1.75 25 2.613 4.413 1.689 1 1.805 0.361 12.166

2.00 25 2.337 4.271 1.827 11.120 0.369 11.489

To illustrate the method, it suffices to restrict the attention to the situation m 2,

and determine the optimal SL limits and the corresponding quantile SL premiums
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for the retained risk and the first layer according to Section 4. In our numerical
example the collective model of risk theory (2.1) is assumed to have a claim size
with mean /i 29 '732 and coefficient of variation A; 8.507. The model used

for the retained risk is (2.4). The claim number random variable has the mean

/«/v 2091.8 and the coefficient of variation ct,v 0.106. The four parameters
of the exponential Pareto model are a 490'000, /i 980'000, T 1 '000'000,
7 1.65999. The number of claims above the observation point T is assumed

to be Poisson distributed with mean 5.25. To design an optimal risk structure we
use the percentile premium principle with r I. The used quantile levels are

£ 80% for the retained risk and e 95% for the first layer. The given XL
deductible structure, the means, standard deviations and coefficients of variation
within the layers, as well as the obtained optimal SL limits, the corresponding
SL premiums and quantile values are summarized in Table 5.1.
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Summary

For a chain of excess-of-loss reinsurance layers with given deductibles, we determine for each

layer a uniquely defined aggregate stop-loss limit. These limits tire optimal in the sense that they

minimize the expected cost of the total retained risk of the first involved layers under restriction
of the corresponding maximum cost to the value-at-risk of the stop-loss risk of the last layer.
This result holds provided the price of the stop-loss risk is set according to some specific quantile
premium principle. It turns out that the optimal stop-loss limits are equal to the unexpected losses of
the stop-loss risks of the different layers under the value-at-risk measure. Analytical approximations
of the relevant distributions tue used to determine in a fast and numerical stable way the optimal
stop-loss limits. A numerical real-life example rounds up the study.

Zusammenfassung

Für eine Kette von Schadenexzedentenrückversicherungen mit gegebenen Selbstbehalten wird für

jeden Layer eine eindeutig definierte Stop-Loss Limite bestimmt. Diese Limiten sind optimal in

dem Sinne, dass sie die erwarteten Kosten des gesamten Risikos im Eigenbehalt für die ersten

involvierten Layer minimieren unter Beschränkung der entsprechenden maximalen Kosten auf den

Value-at-Risk des Stop-Loss Risikos des letzten Layers. Dieses Ergebnis ist gültig falls der Preis

des Stop-Loss Risikos mit Hilfe eines spezifischen Perzentilprämienprinzips ermittelt wird. Es stellt
sich heraus, dass die optimalen Stop-Loss Limiten gleich den unerwarteten Verlusten der Stop-Loss
Risiken der verschiedenen Layer für das Value-at-Risk Mass sind. Analytische Approximationen
der massgeblichen Verteilungen werden benutzt, um die optimalen Stop-Loss Limiten schnell und

numerisch stabil zu ermitteln. Ein reales numerisches Beispiel rundet die Studie ab.

Résumé

Pour une chaîne de réassurance en excess-of-loss avec des franchises données, nous déterminons

pour chaque tranche de risque une limite stop-loss unique. Ces limites sont optimales dans le

sens qu'elles minimisent les coûts espérés du risque total retenu des premières tranches concernées

sous la contrainte que les coûts maximaux correspondants sont limités à la value-at-risk du risque

stop-loss de la dernière tranche. Ce résultat est valable pour autant que le prix du risque stop-loss

est déterminé à l'aide d'un principe percentile de calcul des primes spécifique. 11 s'avère que les

limites stop-loss optimales sont égales aux pertes inattendues des risques stop-loss des différentes

tranches de risque pour la mesure value-at-risk. Des approximations analytiques des distributions

correspondantes sont utilitées pour déterminer rapidement et de façon numériquement stable les

limites stop-loss optimales. Un exemple numérique arrondit cette étude.
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