Zeitschrift:	Umweltradioaktivität und Strahlendosen in der Schweiz = Radioactivité de l'environnement et doses de rayonnements en Suisse = Radioattività dell'ambiente e dosi d'irradiazione in Svizzera
Herausgeber:	Bundesamt für Gesundheit, Abteilung Strahlenschutz
Band:	- (2000)

Rubrik: [Messungen von Spezialnukliden]

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 26.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Abt. Klima und Umweltphysik, Physikalisches Institut.

7.1 Tritium, Kohlenstoff-14 und Krypton-85

R. Fischer und M. Möll	Universität Bern, Sidlerstrasse 5, 3012 BERN
F. Cartier und J. Löhle	Hauptabteilung für die Sicherheit von Kernanlagen 5232 VILLIGEN-HSK
W. Weiss und H. Sartorius	Insțitut für Atmosphärische Radioaktivität, BfS Rosastrasse 9, D-79098 FREIBURG IM BREISGAU

Zusammenfassung

H. Loosli, U. Schotterer, H. Bürki

Die ¹⁴C-Messungen in Baumblättern ergaben 2000 an der Referenzstation einen Wert von $\Delta^{14}C = 94 \pm$ 3‰. Verglichen mit diesem Wert wurden wie in früheren Jahren Netto-erhöhungen in Baumblättern aus der Umgebung der Kernkraftwerke Leibstadt (KKL), Gösgen (KKG) und Mühleberg (KKM) festgestellt. Die beim KKL gefundene maximale Erhöhung betrug 133 ‰. Die Erhöhungen stimmen gut mit denjenigen früherer Jahre überein und deuten auf relativ konstante Emissionen und Verdünnungsvorgänge in den Hauptwindrichtungen hin. Die drei Stichproben aus der Umgebung des KKG ergaben Werte zwischen 6 und 55 ‰. Bei einem angenommenen Langzeit-Verdünnungsfaktor von 3 x 10⁻⁷ s/m³ lassen sich für die letzten 3 Jahre ¹⁴CO₂-Emissionen von ca. 5-10 kBq/s abschätzen, was in der gleichen Grössenordnung ist wie aus einem Siedewasserreaktor. Der Vergleich von Messwerten für Blattproben aus der Umgebung des KKM mit Modellwerten ergibt eine befriedigende Uebereinstimmung. Bei dieser Bewertung ist die variable Verdünnung in hügeligem Gelände und die Unsicherheit der Emissionen zu berücksichtigen.

In der Umgebung des PSI resp. des ZWILAG wurden wiederum elf ¹⁴C-Proben gemessen. Wie in früheren Jahren wurde eine recht gleichmässige Erhöhung (bis maximal 55 ‰) gefunden. Die Quellen dieser Erhöhungen sind unklar.

In Basel sind die Erhöhungen in der Nahumgebung des Verbrennungsofens der Firma NOVARTIS verschwunden. Das wird darauf zurückgeführt, dass nur noch nachts ¹⁴C-haltige Abfälle verbrannt werden. Erhöhungen sind aber nach wie vor am Volta-Platz und in der Umgebung der Firma ROCHE gemessen worden, was auf zwei weitere Emissionsquellen deutet. Ein Teil dieser künstlichen Aktivität kann mit Ethanol abgewaschen werden, wurde also nicht als CO₂ emittiert.

Alle gemessenen ¹⁴C-Erhöhungen führen zu hypothetischen zusätzlichen Dosen, die in der Grössenordnung von µSv pro Jahr liegen; sie fallen also nicht ins Gewicht. Die Bedeutung der ¹⁴C-Messungen liegt also nicht primär bei den zusätzlichen zu erwartenden Dosen d.h. beim Strahlenschutz, sondern darin, dass mit diesem Nuklid Umweltprozesse untersucht und besser verstanden werden können und dass die verwendeten Ausbreitungsmodelle getestet werden können.

⁸⁵Krypton ist eines der wenigen Radionuklide, deren Aktivität in der Atmosphäre noch ansteigt. Der heutige Grundlevel beträgt ca. 1,3 Bq/m³. Dieser Anstieg lässt darauf schliessen, dass in Wiederaufbereitungsanlagen vermehrt Kernbrennstoff verarbeitet wird, was zu ansteigenden Emissionen führt. Die Messresultate lassen diese Emission für das Jahr 2000 zu ca. 5 x 10¹⁷ Bq abschätzen. Erhöhte Wochenwerte bis ca. 3,5 Bq/m³ Luft wurden auch 2000 in Luftproben vom Jungfraujoch und von tieferen Stationen (z.B. Freiburg im Breisgau) beobachtet. Die Strahlendosis durch ⁸⁵Kr (β-Dosis der Haut und γ-Dosis) ist kleiner als 1μ Sv/Jahr (effektive Dosis) und deshalb vernachlässigbar.

Figur 1: Δ^{14} C Konzentrationen in Buchenblättern von den Referenzstationen

Die Δ^{14} C Konzentration in Buchenblättern an der Referenzstation auf dem Längenberg betrug im Jahr 2000 noch 94 ± 3 ‰. Die kontinuierliche Abnahme des atmosphärischen ¹⁴CO₂-Gehaltes ist darauf zurückzuführen, dass das atmosphärische CO₂ ständig mit dem CO₂ des globalen Ozeans im Austausch ist, so dass die durch die Kernwaffentests in den 60er Jahren produzierte zusätzliche ¹⁴C-Aktivität langsam in die Ozeane verschwindet. Innerhalb 3 Standard-Abweichungen stimmen die niedrigsten Werte in der Umgebung des KKW Gösgen und der Verbrennungsanlage der NOVARTIS in Basel (ca. 15 Proben) mit dem Wert der Referenzstation überein, was auf die Reproduzierbarkeit unserer ¹⁴C-Messungen hinweist. Die in den Figuren 2 bis 10 dargestellten Netto-Erhöhungen sind die Abweichungen zu den oben erwähnten +94 ‰ an der Referenzstation.

Figur 2: Netto △¹⁴C in der Umgebung vom KKW Leibstadt, 2000

Das Ueberwachungsprogramm in der Umgebung des KKL wurde als Langzeitreihen für sechs Standorte weitergeführt. Die grössten Erhöhungen der ¹⁴C-Aktivität in Buchenblättern traten wie früher in einer Entfernung von ca. 1 km vom Abluftkamin in den beiden Hauptwindrichtungen auf (mittlere Figur). In grösserer und kleinerer Entfernung sind in nordöstlicher Richtung die gemessenen Erhöhungen kleiner, was mit den Ausbreitungsmodellen übereinstimmt. Die gemessenen Erhöhungen sind im Laufe der Jahre bemerkenswert konstant geblieben (untere beide Figuren für die Standorte Chlämmi, Ried und Schlüsselgraben). Dies lässt auf ähnliche Emissionensraten (ca 10⁴ Bq/s) in der Wachstumsperiode und auf relativ konstante Langzeitverdünnungfaktoren ($\chi \approx 5 \times 10^{-7}$ s/m³) schliessen. Eine zusätzliche ¹⁴C-Aktivität von 100 ‰ führt zu einer hypothetischen maximalen (effektiven) Dosis von ca.1 µSv/Jahr. Dies fällt gegenüber den Variationen der natürlichen Strahlungsdosen und insbesondere denjenigen wegen Radon nicht ins Gewicht.

Figur 3: Netto Δ ¹⁴C in der Umgebung vom Kernkraftwerk Mühleberg, 2000 (die Kreisflächen sind proportional zur gemessenen Nettoerhöhung) und Konturen des Gauss-Modells

Die im Jahr 2000 gemessenen Netto Δ ¹⁴C-Werte in Baumblättern können mit Ergebnissen der Modellrechnung verglichen werden. Annahmen der HSK sind Emissionen von ca. 6000 Bq/s (tagsüber) und ein Langzeitverdünnungsfaktor von ca. 7 x 10⁻⁷ s/m³. Damit erhält man am Hauptaufschlagspunkt (Ufem Horn, Nr.15) eine Erhöhung von 100‰, was mit der Messung ausgezeichnet übereinstimmt. Das Modell würde allerdings in nordöstlicher Richtung an der Aare und auf der Anhöhe Salvisberg geringere Erhöhungen voraussagen als die gemessenen 25-50‰ Dagegen sagt das Modell richtigerweise für das Jahr 2000 östlich von Frieswil (d.h. in doppelter Entfernung wie Salvisberg) wieder erhöhte Werte voraus. Generell ist aber die Uebereinstimmung zwischen Modell und Messung als gut zu bewerten, sind doch schon die Emissionen nur auf ca. 50% genau bekannt; ferner ergibt das hügelige Gelände in der Umgebung des KKM grosse Variationen bei der Ausbreitung. Der Vergleich zwischen Modell- und Messwerten Ufem Horn unterstützt die getroffenen Modellannahmen, die Messwerte in nordöstlicher Richtung weisen auf eine schlechtere Durchmischung als im Modell vorausgesagt hin.

(Bewertung der zusätzlichen Dosis: siehe Legende der Figur 2)

Figur 4: Zeitreihen einiger Stichproben – Standorte in der Umgebung des KKM (Standort-Nummern: siehe Figur 3)

Für einige Standorte in der Umgebung des KKM wurden in den letzten 25 Jahren periodisch Netto - $\Delta^{14}C$ – Erhöhungen gemessen. Für zwei Orte in westlicher (Nr. 14 und 15) und in östlicher (Nr. 6 und 7) Richtung sind alle Ergebnisse oben dargestellt. Eine bemerkenswerte Konstanz der Immissionen ist zu beobachten; z.B. betrug die Erhöhung Ufem Horn immer etwa 80‰ und sie war an den andern Standorten meist geringer. Diese Konstanz der Immissionen deutet auf etwa gleich gebliebene Emissionen und Windverhältnisse während der Wachstumsperiode der Blätter hin.

- B.7.1.6 -

Figur 5: Netto \triangle^{14} C Werte in der Umgebung des Kernkraftwerkes Gösgen (Kreisflächen der oberen Figur sind proportional zur gemessenen Netto Erhöhung)

In der oberen Figur sind die Messresulte der im Jahre 2000 gewonnenen drei Stichproben dargestellt, in der unteren Figur alle seit 1984 gemessenen Netto-Erhöhungen.

Es ist anzunehmen, dass ein Druckwasserreaktor wie Gösgen ¹⁴C vorwiegend in der Form von CH₄ abgibt, d.h. für Pflanzen nicht assimilierbar. Messwerte zwischen 50 und 100‰ würden aber bei einem angenommenen Langzeitverdünnungsfaktor von 3 x 10⁻⁷ s/m³ auf ¹⁴CO₂ Emissionen von ca. 5-10 kBq/s während der Wachstumsperiode schliessen lassen, d.h. in der gleichen Grössenordnung wie aus dem KKM und KKL. Allerdings kann aus den Messwerten der Standorte Sören und Schachen in den drei letzten Jahren nicht eindeutig auf höhere ¹⁴CO₂ –Emissionen durch das KKG als in früheren Jahren geschlossen werden; es kann auch sein, dass diese beiden Standorte den Hauptaufschlagpunkt der Abluft besser erfassen als die früher gewählten Stichproben-Standorte Aarfeld und Obergösgen. Betreffend zusätzlicher Dosis: Siehe Legende zu Figur 2.

Figur 6

Netto Δ^{14} C Werte in der Umgebung des PSI/ZWILAG und Vergleich der Δ^{14} C-Werte in den Jahren 1999 und 2000

(Netto Erhöhungen in der oberen Figur sind proportional zur Kreisfläche; in der unteren Figur sind die ∆-Werte direkt aufgetragen)

Auch im Jahre 2000 wurden in der Um-gebung des PSI resp. des ZWILAG in Baumblättern ziemlich gleichmässig erhöhte Δ¹⁴C-Werte gemessen, allerdings mit steigender Tendenz, wie der Vergleich der Messwerte der beiden letzten Jahre zeigt. Die Quelle der Erhöhung ist unklar; in Frage kommen die Verbrennung ¹⁴C-haltiger Abfälle im PSI, die am SIN durchgeführten Experimente und das KKB. Betreffend zusätzlicher Dosis: Siehe Legende zu Figur 2.

Figur 7: Netto \triangle^{14} C-Werte in Basel, Herbst 2000

In der Nah-Umgebung des Verbrennungsofens der Firma NOVARTIS zeigte im Jahre 2000 kein einziger Messpunkt erhöhte Δ^{14} C-Werte. Dies ist darauf zurückzuführen, dass seit 1998 ¹⁴C-haltige Abfälle nur noch nachts verbrannt werden. Dagegen sind weiterhin erhöhte Werte westlich vom Rhein am Voltaplatz (d.h. beim ehemaligen SANDOZ Areal) und in der Umgebung der Firma ROCHE gemessen worden (siehe Figuren 8 und 9). Maximal betragen die Werte 90 resp. 102‰. An über 15 Orten ergaben die Messungen Δ^{14} C-Werte, die innerhalb von 2® mit dem Wert der Referenzstation übereinstimmen; im Nord-Osten des Verbrennungsofens zeigte der Standort nahe der Autobahn einen Netto Δ^{14} C-Wert von –9‰, was mit der Verdünnung durch fossiles CO₂ erklärbar ist. Für zusätzliche Strahlendosen: Siehe Legende zu Figur 2.

Figur 8: Netto A¹⁴C-Werte auf dem Gebiet westlich des Rheins (W-Nummern)

Im Bereich des Volta-Platzes wurden auch im Jahre 2000 die Zeitreihen fortgesetzt; 7 von 9 Messwerten ergaben Erhöhungen. Tendenziell sind die Werte etwas geringer als in früheren Jahren. Aus den Messwerten muss aber auf eine oder mehrere lokale Quellen geschlossen werden (siehe Figur 10).

Figur 9: Netto A¹⁴C-Werte an Blattproben aus der Umgebung der Firma ROCHE

Auch in der Nahumgebung der Firma ROCHE wurden die Zeitreihen fortgesetzt. Ein Maximalwert von 102‰ liegt praktisch gleich hoch wie in den vier vorausgehenden Jahren. Drei Standorte ca. 1km nördlich des Areals zeigten leichte Erhöhungen von 11 bis 23‰ während weitere 6 Standorte Δ^{14} C-Werte ergaben, die innerhalb 2 σ mit dem Wert der Referenzstation übereinstimmen (siehe Figur 7). Zur Erklärung der gemessenen Erhöhung muss eine lokale ¹⁴C-Quelle angenommen werden.

Figur 10: Ergebnis der Abwaschversuche 2000

Zum Verständnis der bisherigen Messungen in Basel wurden zwei zusätzliche Fragen weiterverfolgt:

- lässt sich die ¹⁴C-Aktivität auf Blättern vom Voltaplatz und aus der Umgebung ROCHE abwaschen ? und
 kann das Gauss-Modell die ¹⁴C-Erhöhung der Jahre 1996 und 1997 des Verbrennungsofens der
- NOVARTIS erklären?

Die oben dargestellten Ergebnisse zeigen, dass sich die ¹⁴C-Aktivität mit Ethanol und destilliertem Wasser wenigstens zum Teil entfernen lässt, dass also mindestens ein Teil der lokalen Quellen nicht CO₂ Emittenten sind. Die Abwaschversuche werden weitergeführt.

Die Modellrechnungen zur Beantwortung der 2. Frage gingen aus von bekannten Abgaben während 9 Verbrennungs-Daten im Jahr 1996 in den Monaten April und Mai resp. 7 Tagen im Jahr 1997 (Moser und Wenger, NOVARTIS, 2000). Während die Orte mit erwarteten ¹⁴C-Erhöhungen recht gut vorausgesagt werden konnten (Maximal-Werte in ca. 300 bis 1000m Abstand), ist die Modell-Verdünnung zu stark. Ferner zeigte sich, dass die tatsächliche Ausbreitung des ¹⁴CO₂ im überbauten Gebiet und bei Schwachwindlagen in breitere Sektoren erfolgt als im Modell.

Figur 11: ⁸⁵Kr Aktivität in Troposphärenluft vom Jungfraujoch (seit Messbeginn im Jahre 1990)

Die im Institut für atmosphärische Radioaktivität, Freiburg im Breisgau, gemessenen ⁸⁵Kr-Aktivitäten in Wochen-Proben zeigten auch auf dem Jungfraujoch die ansteigende Tendenz des Grundlevels. Dieser hat heute ca. 1,3 Bq/m³ erreicht. Aus diesem Anstieg muss auf steigende Emissionen aus den Wiederaufbereitungsanlagen und also auf eine umfangreiche Bearbeitung von Kernbrennstoff geschlossen werden. Die Emissionen müssen weltweit auch im Jahre 2000 ca. 5 x 10¹⁷ Bq betragen haben. Die ⁸⁵Kr Aktivität ist in der Luft dann deutlich höher als der Grundlevel, wenn die Probenahmestation in eine noch schlechter verdünnte Abluftfahne von La Hagne oder Sellafield gerät. Es ist verständlich, dass die Spikes in Freiburg häufiger und höher auftreten als auf dem Jungfraujoch, weil in 3500 m Höhe die Verdünnung von Abluft stärker ausfällt. Der höchste Spike auf dem Jungfraujoch ergab im Jahre 2000 ca. 1,8 Bq/m³, derjenige in Freiburg im Breisgau ca 3.4 Bq/m³. Mit diesen Messwerten stimmen die ⁸⁵Kr-Aktivitäten überein, die an Stichproben aus Luft im Labor Bern bestimmt wurden. Sie ergaben:

Probe vom 13.3.2000: $3.4 \pm 0.2 \text{ Bq/m}^3$ Probe vom 24.4.2000: $2.5 \pm 0.2 \text{ Bq/m}^3$ Probe vom 5.6.2000: $1.2 \pm 0.1 \text{ Bq/m}^3$

Tabelle 1: Übersicht über die Tritium-Messwerte in Niederschlägen und Flüssen für die Jahre 1992 - 2000

			· · · · · · · · · · · · · · · · · · ·							
	Station / Jahr	1992	1993	1994	1995	1996	1997	1998	1999	2000
	Basel ¹⁾	2.9 (1.5-3.8)	3.2 (1.7-5.7)	3.2 (0.9-5.8)	2.5 (1.6-9.2)	3.8 (2.4-6.0)	2.9 (2.2-4.9)	2.2 (1.9-5.2)	2.9 (1.2-3.4)	2.1 (1.5-3.6)
Flüsse	Bern 1)	5.5 (3.7-14)	5.8 (1.3-28)	5.5 (3.1-28)	4.8 (1.2-32)	4.4 (3.4-5.5)	6.5 (2.9-21)	3.6 (1.8-7.5)	3.5 (2.2-5.7)	4.1 (1.2-16)
	Grimsel/BE ¹⁾	1.5 (0.4-2.9)	1.6 (0.8-3.7)	1.8 (0.5-2.9)	2.0 (0.7-2.8)	2.4 (1.3-4.1)	1.7 (0.8-3.4)	1.2 (0.8-2.9)	1.4 (0.6-2.2)	0.9 (0.5-1.8)
	Guttannen/BE 1)	1.8 (0.8-2.8)	1.7 (0.5-2.8)	1.7 (0.4-4.3)	2.0 (0.7-3.2)	2.6 (1.3-3.5)	1.6 (0.6-2.5)	1.5 (0.9-2.9)	1.3 (0.9-2.4)	1.1 (0.6-2.0)
	Meiringen/BE ¹⁾	2.2 (1.2-2.8)	2.3 (1.2-4.0)	1.9 (1.0-3.0)	2.1 (0.7-3.1)	2.3 (0.8-3.9)	1.6 (0.6-2.3)	1.2 (0.9-3.0)	1.5 (1.2-2.5)	1.5 (0.7-2.4)
2	Vaduz/FL ¹⁾	1.5 (0.7-3.4)	2.5 (0.4-4.2)	2.3 (1.1-4.6)	2.3 (0.7-3.8)	2.5 (1.7-4.9)	2.0 (0.7-3.9)	1.7 (1.1-2.7)	1.7 (1.2-3.2)	1.6 (0.7-2.4)
ege	Nyon/VD ¹⁾		2.0 (0.7-4.9)	2.4 (0.8-7.1)	2.0 (1.2-4.8)	2.6 (1.4-4.5)	2.0 (1.2-2.8)	1.7 (1.2-2.3)	1.9 (0.8-3.2)	1.2 (0.8-2.4)
Ĕ	La Brévine/NE ¹⁾	·	2.3 (0.5-5.0)	1.7 (0.5-4.3)	1.5 (0.8-3.2)	1.8 (1.0-3.8)	1.6 (0.8-2.6)	1.2 (0.9-2.9)	1.4 (0.7-3.1)	1.2 (0.7-2.8)
	Locarno ¹⁾	1.7 (0.5-13)	1.8 (0.6-2.4)	1.7 (0.3-3.9)	1.0 (0.7-2.3)	1.5 (0.6-2.3)	1.2 (0.6-1.5)	1.0 (0.7-1.9)	1.1 (0.6-2.2)	1.0 (0.5-1.5)
	Fribourg ²⁾		3.0 (1.5-10)	2.7 (0.8-4.6)	2.7 (1.2-5.2)	3.2 (1.4-5.2)	2.8 (1.4-8.0)	1.9 (0.7-2.7)	1.7 (0.9-5.2)	1.4 (0.4-1.8)
÷	Leibstadt/AG ²⁾		4.2 (2.6-5.5)	3.4 (2.2-6.8)	3.6 (1.9-7.5)	3.3 (2.4-4.7)	4.5 (3.0-7.5)	2.4 (1.9-3.7)	2.6 (1.6-3.6)	2.9 (0.5-8.9)
	Gösgen/SO ²⁾		3.6 (1.9-6.4)	3.4 (2.5-4.9)	3.9 (2.2-5.6)	3.9 (2.2-13)	4.7 (3.0-8.3)	2.6 (1.6-3.4)-	2.4 (1.7-4.7)	2.5 (0.7-10)
	Mühleberg/BE ²⁾		2.8 (1.7-3.8)	3.7 (1.1-4.4)	4.0 (1.3-8.7)	3.5 (1.9-4.7)	3.7 (1.7-134)	2.4 (2.0-4.9)	2.2 (1.5-4.1)	1.8 (0.7-2.9)
	Aare beim KKM ²⁾			2.4 (2.1-2.9)	2.9 (2.6-4.6)	2.7 (2.1-4.0)	2.3 (1.7-2.5)	1.9 (1.5-2.6)	1.9 (1.5-2.6)	1.7 (1.1-2.1)
	Aare bei Brugg ¹⁾		4.4 (3.2-21)	4.3 (2.2-12)	4.2 (2.7-11)	4.2 (2.6-19)	3.8 (1.7-29)	3.5 (1.2-16)	3.5 (2.6-9.1)	2.8 (1.7-8.8)
e	Ticino/Contone/TI ²⁾		1.9 (0.9-3.2)	1.9 (0.7-3.1)	2.0 (1.3-3.1)	1.8 (1.1-2.5)	2.1 (1.3-6.7)	1.4 (0.7-1.8)	1.4 (0.8-2.1)	1.0 (0.7-1.8)
üss	Rhône/P.d.Scex/VS ²⁾	-	2.3 (1.2-3.0)	2.3 (1.2-3.4)	2.4 (1.5-3.1)	2.2 (1.4-2.9)	2.8 (1.7-4.1)	1.7 (1.1-2.1)	1.8 (0.8-2.5)	1.1 (0.8-1.8)
E	Rhone/Chancy/GE ²⁾	_	3.7 (2.5-5.0)	3.1 (2.5-5.3)	3.1 (2.0-4.9)	3.4 (2.7-3.9)	3.8 (3.0-8.2)	2.3 (1.9-3.9)	2.3 (1.6-3.0)	1.6 (0.8-2.3)
	Doubs/St-Ursanne/JU ²⁾		49 (27-125)	24 (16-103)	26 (5 - 32)	28 (18 - 38)	24 (9.8-43)	16 (7 - 37)	7.0 (4.6-8.3)	
	Rhein/Weil (b.Basel) ²⁾			· · · ·		3.1 (1.8-3.8)	2.5 (2.1-3.6)	2.5 (1.5-4.7)	2.7 (1.8-4.6)	2.3 (1.3-5.2)

(fettgecruckt: Medianwert pro Jahr in Bq/I, in Klammern: Wertebereich der Monatswerte in Bq/I)

¹⁾ Messung Universität Bern (U. Schotterer & H. Bürki), ± (0.1 - 0.3) Bq/l; ²⁾ Messung SUER (H. Völkle & A. Gurtner), ± (0.4 - 0.8) Bq/l

Kommentar zur den Messwerten von 2000: Alle Tritiumkonzentrationen der Niederschläge des Jahres 2000 liegen unter denen des Vorjahres. Zudem ist wieder der 'klassische' Jahresgang mit dem Minimum der Konzentrationen in den Wintermonaten bei allen Stationen sichtbar. Der über-regionale Einfluss von KKWs und Wiederauf-bereitungsanlagen war im letzten Jahr offensichtlich sehr gering.

Ausnahmen sind die Station Bern und Basel, die durch lokale Abgaben von Industrie-Tritium beeinflusst werden. In Bern sind zudem die Konzentrationen höher als im Vorjahr. Die hohen Abgaben im Januar 2000 zum Beispiel haben sich wahrscheinlich auch bis Meiringen ausgewirkt.

7.2. Mesures de plutonium et d'américium dans l'environnement

P. Froidevaux, J.-J. Geering, T. Schmittler, F.Barraud, J.-F. Valley Institut de radiophysique appliquée, Grand Pré 1, 1007 LAUSANNE

Résumé

L'activité en plutonium et en américium a été mesurée séquentiellement sur des échantillons de sols, de sédiments, d'eau et de filtres à air. Dans les sols, l'activité en 239/240 Pu est comprise entre 0.08 et 2.0 Bq/kg de masse sèche (MS). L'activité en ²³⁸Pu est environ 35 fois inférieure. L'activité en américium est comprise entre 0.03 et 0.8 Bq/kg MS et représente environ 0.4 fois l'activité en ^{239/240}Pu. Dans les sédiments collectés en aval des centrales nucléaires suisses, les rapports isotopiques moyens 238 Pu/ 239/240 Pu (0.028±0.004) et ²⁴¹Am/ ^{239/240}Pu (0.41±0.03) indicatifs des retombées des essais de bombes atomiques sont respectés. Dans les eaux de rivières et du robinet, l'activité en plutonium et en américium ne dépasse pas 4 mBq/m³. Dans l'eau de pluie de Fribourg toutefois, une activité en américium de 10 mBq/m³ a été mesurée. Cette valeur est à mettre en relation avec l'activité des filtres à air de Fribourg (75 nBq/m³) indiquant une très légère contamination en ²⁴¹Am, alors que les filtres à air de Mühleberg, Gösgen, Morges et Romanshorn, mesurés pour contrôle, indiquent une valeur inférieure à 2 nBq/m³. On soupçonne que l'incinération de détecteurs d'incendie est à l'origine de cette légère augmentation d'activité en américium des filtres à air de Fribourg.

7.2.1 Introduction

La radioactivité naturelle dans l'environnement provient principalement de l'uranium et du thorium, en incluant les séries des produits de filiation, et du potassium. Aujourd'hui, se surimpose à cette radioactivité naturelle la radioactivité artificielle déposée lors des essais de bombes atomiques réalisés en atmosphère dans les années soixante, lors de la désintégration du satellite SNAP-9A et lors de l'accident de la centrale nucléaire de Chernobyl.

L'industrie nucléaire peut, lors d'incidents mineurs ou lors du stockage des déchets, relâcher dans l'environnement des constituants similaires à ceux des retombées des essais d'armes atomiques. Il est ainsi important de pouvoir déterminer l'origine des radioéléments présents dans les échantillons soumis à l'analyse, particulièrement dans le cadre d'un plan de surveillance. Dans ce rapport, une analyse multi-variables utilisant les activités en américium, ²³⁸Pu , ^{239/240}Pu et ¹³⁷Cs a été tentée afin de déterminer l'origine des dépositions.

7.2.2 Méthode

La méthode de séparation chimique utilisée en 2000 a été développée à partir de la méthode de EML [1] et adaptée à l'utilisation de la digestion micro-onde d'échantillons. Elle consiste à séparer séquentiellement le plutonium et l'américium sur des résines Dowex AG 1x8, TRU[®] et TEVA[®] et à électodéposer les actinides sur disque d'acier[2]. Les sources sont ensuite mesurées sur une installation Canberra Alpha Analyst munie de détecteurs PIPS.

La méthode a été testée sur l'échantillon de sédiments IAEA-300, a fait l'objet des exercices d'intercomparaison IAEA-384 (proficency test) et IAEA-414 (échantillon de poisson) ainsi que de l'exercice PROCORAD 2000 (actinides dans les cendres de selles).

7.2.3 Mesures du plutonium et de l'américium dans le sol, les sédiments, l'eau et l'air

Introduction

L' 241 Am (période de 445 ans) est un produit de filiation du ²⁴¹Pu (période de 14.4 ans). Dans l'environnement en Suisse, on le trouve associé au ^{239/240}Pu dans un rapport d'environ 0.40 [3, 4, 5]. Ce rapport est typique de la déposition atmosphérique due aux essais d'armes atomiques réalisés dans les années soixante. La présence de ²³⁸Pu dans l'environnement provient essentiellement de la désintégration dans l'atmosphère du satellite SNAP-9A en 1964 et le rapport 238Pu/239/240Pu est proche de 0.030 [6]. Lors de contaminations industrielles, ces rapports se modifient de manière significative [7, 8, 9]. On constate donc que l'analyse détaillée des rapports des différents isotopes de plutonium et d'américium est très importante dans l'établissement de l'origine d'une contamination de l'environnement par ces radioéléments; c'est pourquoi les analyses effectuées seront toujours commentées selon ce critère.

Résultats de la surveillance

Concentration de plutonium et d'américium dans les sols

Tous les échantillons ont été analysés pour en déterminer la concentration en plutonium et en américium, exprimée en Bq/kg de matière sèche. Les résultats sont présentés dans le Tableau 1. La Figure 1 est la représentation graphique des variables faisant intervenir l'activité en ²³⁸Pu, en ^{239/240}Pu et en ²⁴¹Am d'un échantillon. Dans cette figure, on constate que tous les échantillons mesurés, sauf deux, constituent un seul groupe centré sur la valeur (0.41;0.03). Ces coordonnées correspondent aux rapports requis pour attribuer la déposition aux retombées des essais d'armes atomiques réalisés

en atmosphère dans les années soixante. Pour ce groupe, les activités en ²³⁸Pu, ^{239/240}Pu et ²⁴¹Am sont très fortement corrélées (r>0.98).

Les deux valeurs représentées dans la Figure 1 et qui forment un second groupe correspondent aux activités mesurées en 1999 et en 2000 sur un échantillon de sol dans les environs du CERN (Booster). Bien que le rapport ²³⁸Pu/^{239/240}Pu indicatif des retombées des années soixante soit respecté, il semble que l'inventaire en ²⁴¹Am soit le double de celui attendu. Dans un profil de sol d'un autre échantillon des environs du CERN (La Maille) une déposition de 76 Bq/m² en 239/240 Pu. très proche d'autres valeurs mesurées pour le ^{239/240}Pu sur le Plateau suisse [10], a été mesurée. Le plutonium ne pose donc pas de problème dans ces échantillons alors que l'américium, utilisé dans les détecteurs d'incendie, peut être introduit accidentellement dans l'environnement comme déchets de construction ou lors de l'incinération de ces déchets.

Tableau 1 : Concentration en plutonium et américium dans le sol en 2000(couche de 0 à 5 cm ou spécifiée).

	Bq	/kg	Rapport	Rapport ²⁴¹ Am/ ^{239/240} Pu	
Lieu	^{239/240} Pu	²⁴¹ Am	²³⁸ Pu/ ^{239/240} Pu		
Centrales nucléaires :	·			<u>1</u>	
Mühleberg (BE)	0.174±0.007	0.078±0.009	0.026±0.006	0.45±0.05	
Gösgen (SO)	0.29±0.0.01	0.12±0.01	0.029±0.005	0.41±0.05	
Leibstadt (AG)	0.22±0.01	0.099±0.008	0.026±0.007	0.45±0.05	
Beznau (AG)	0.115±0.005	0.051±0.006	0.026±0.007	0.44±0.07	
Sites en plaine :					
Grangeneuve (FR)	0.24±0.01	0.096±0.009	0.027±0.006	0.40±0.05	
Arenenberg (TG)	0.253±0.008	0.11±0.01	0.034±0.005	0.43±0.05	
Fahrni (BE)	0.67±0.02	0.23±0.02	0.027±0.003	0.34±0.04	
PSI (Zwillag)	0.165±0.009	0.071±0.007	0.032±0.009	0.43±0.06	
CERN (Maille, 0-10)	0.21±0.01	0.037±0.006	0.029±0.008	0.18±0.05	
CERN (Maille, 10-20)	0.21±0.01	n.m.	0.025±0.006	n.m.	
CERN (Maille, 20-30)	0.21±0.009	n.m.	0.024±0.006	n.m.	
CERN (Booster)	0.090±0.006	0.11±0.01	0.036±0.01	1.22±0.08	
Rodi (TI)	0.28±0.01	0.12±0.02	0.032±0.007	0.43±0.08	
Sessa (TI)	0.46±0.01	0.19±0.01	0.029±0.003	0.41±0.03	
Sites en altitude :					
Diesse (BE)	0.54±0.01	0.20±0.03	0.024±0.003	0.37±0.06	
Allmendhubel (BE)	1.17±0.03	0.44±0.03	0.027±0.003	0.38±0.03	
Gimmelwald (BE)	0.75±0.02	0.29±0.02	0.023±0.004	0.39±0.03	
Intragna (TI)	1.82±0.08	0.76±0.03	0.020±0.004	0.42±0.03	
Davos (GR)	1.30±0.03	0.52±0.02	0.029±0.001	0.40±0.03	
Châtel (Croix)	1.51±0.03	0.64±0.02	0.032±0.002	0.42±0.02	
Châtel (sous-buvette)	1.86±0.03	0.72±0.0.02	0.032±0.002	0.39±0.02	
Mt-Tendre (ferme, 0-5)	1.06±0.02	0.35±0.007	0.025±0.002	0.33±0.003	
Mt-Tendre (ferme,5-10)	1.15±0.03	0.47±0.03	0.025±0.003	0.41±0.03	
Mt-Tendre (Montricher)	0.88±0.02	0.37±0.03	0.025±0.003	0.42±0.04	
Etude spéciale					
Gotthard 1	0.077±0.006	0.033±0.006	0.031±0.005	0.43±0.10	
Gotthard 2	0.44±0.04	0.17±0.01	0.025±0.005	0.39±0.05	
Biasca	0.141±0.007	0.083±0.01	0.056±0.006	0.59±0.10	
Stabio	0.70±0.05	0.32±0.02	0.030±0.004	0.46±0.06	

 $^{241}\text{Am}/^{239/240}\text{Pu} = 0.41\pm0.03$ (moyenne suisse)

 238 Pu/ $^{239/240}$ Pu = 0.028±0.004 (moyenne suisse)

Figure 1

Analyse multi-variables des échantillons de sols et de sédiments collectés et mesurés pour les isotopes 238 Pu, $^{239/240}$ Pu et 241 Am, en 2000. Les barres d'erreur sur les rapports sont reportées en 2σ , pour un intervalle de confiance de 95%.

L'analyse multivariables permet également de déterminer l'origine de la contamination en ¹³⁷Cs des échantillons prélevées en Suisse en 2000. Dans la figure 2. Le rapport ¹³⁷Cs/^{239/40}Pu est reporté en fonction du rapport ²⁴¹Am/^{239/240}Pu. Dans le cas d'une contamination due uniquement aux essais des armes atomiques, le rapport 137Cs/239/240Pu prend une valeur proche de 40 [11] et le rapport ²⁴¹Am/^{239/240}Pu une valeur de 0.41 (moyenne suisse en 2000). Les points de la Figure 2 respectent le rapport ²⁴¹Am/^{239/240}Pu alors que le rapport ¹³⁷Cs/^{239/240}Pu s'échelonne sur une large gamme de valeurs. Ainsi, la déposition de ¹³⁷Cs due à l'accident de la centrale de Chernobyl a peu touché la plupart des sites de prélèvement en Suisse avec au maximum un doublement de l'inventaire, alors que le Tessin voit son inventaire en ¹³⁷Cs dû aux dépositions des essais d'armes nucléaires réalisés en atmosphère dans les années soixante plus que décupler (Figure 3).

Figure 2

Analyse multi-variables des échantillons de sols et de sédiments collectés et mesurés pour les isotopes ^{239/240}Pu, ²⁴¹Am et ¹³⁷Cs, en 2000.

Figure 3

Activité en ¹³⁷Cs en fonction de l'activité en ^{239/240}Pu de l'échantillon. La ligne pleine représente la valeur attendue pour une déposition en ¹³⁷Cs et ^{239/240}Pu dont l'origine est les tests d'armes atomiques alors que la ligne pointillée indique un décuplement de cette activité.

Concentration en plutonium et américium dans les sédiments

La collecte d'échantillons de sédiments de surface en aval d'une centrale est un moyen simple et efficace de déterminer l'impact de celle-ci sur l'environnement aquatique. Des radioéléments tels que le césium, le plutonium et l'américium s'adsorbent fortement sur les particules des sédiments. Lors des rejets liquides des centrales nucléaires, le ⁶⁰Co peut être mesuré au-dessus de la limite de détection dans les sédiments [12]. Sanchez-Cabeza et al. [13] ont mesuré une légère augmentation de l'activité en plutonium dans les sédiments collectés dans l'environnement marin du réacteur nucléaire de Vandellos (Espagne). Lors des mesures effectuées en 2000 sur les sédiments des rivières en aval des centrales nucléaires suisses les différents isotopes du

nucléaires suisses, les différents isotopes du plutonium et l'américium ont été mesurés dans les rapports attendus pour les retombées des essais de bombes atomiques.

Centrales nucléaires	Période de prélèvement	^{239/240} Pu	Rapport ²³⁸ Pu/ ^{239/240} Pu	²⁴¹ Am	Rapport ²⁴¹ Am/ ^{239/240} Pu
Aval de Mühleberg Hagneck	29.08-02.10.00	0.109±0.004	0.032±0.007	0.042±0.01	0.39±0.1
Aval de Gösgen et de Beznau Lac de Klingnau	04.07-02.08.00	0.093±0.004	0.022±0.007	0.036±0.007	0.43±0.05
Aval de Leibstadt Pratteln	04.04-02.05.00	0.067±0.004	0.025±0.002	0.029±0.02	0.39±0.09

Tableau 2: Concentration (Bq/kg) en plutonium et en américium dans des sédiments en 2000.

Concentration en 238 Pu , $^{239/240}$ Pu et 241 Am dans l'air

Conformément au plan annuel de prélèvement, l'activité en plutonium et en américium a été déterminée sur des filtres à air pour un site en plaine (Fribourg) et l'autre en montagne (Weissflujoch). La durée du prélèvement s'étend sur une année car l'activité de ces deux radionucléides dans l'air est très faible et provient, en situation normale, de la resuspension [14]. Toutefois, une faible contamination en américium a été détectée sur les filtres à air de Fribourg. Dans une moindre mesure, les filtres à air collectés au Weissfluhjoch présentaient aussi une activité supérieure en américium à celle attendue. Des mesures de contrôle ont alors été effectués sur les filtres à air collectés à Morges, Mühleberg, Gösgen et Romanshorn, qui n' ont indiqué aucune augmentation de l'activité en américium et en plutonium. On peut donc conclure qu'une très faible contamination en américium, sans danger pour le public et l'environnement, probablement due à l'incinération accidentelle d'un détecteur de fumées, s'est produite aux environs de Fribourg.

Tableau 3 : Concentration en plutonium et en américium dans l'air.

· · · · · · · · · · · · · · · · · · ·					
Emplacement	Année	^{239/240} Pu	²³⁸ Pu	²⁴¹ Am	
Fribourg	1994	1.36±0.25	1.47±0.25		
Fribourg	1995	1.23±0.16	0.36±0.07		
Fribourg	1996	<1.6	<0.6		
Fribourg	1997	1.8±0.3	0.21±0.07		
Fribourg	1998	2.2±1	<0.5	2.1±0.5	
Fribourg	1999	1.5±0.3	0.4±0.1	0.6±0.2	
Fribourg	2000	1.5±0.3	<0.1	75±3	
Weissfluhjoch	1996	1.9±0.8	1.1±0.2		
Weissfluhjoch	1997	4.0±0.5	< 0.3		
Weissfluhjoch	1998	3.5±1	1.3±0.5		
Weissfluhjoch	1999	4.1±1	1.5±0.4	0.9±0.3	
Weissfluhjoch	2000	10±1	0.6±0.2	13±2	
Mühleberg	2000	0.7±0.2	<0.3	1.1±0.3	
Morges	2000	0.6±0.1	<0.3	0.9±0.3	
Gösgen	2000	1.0±0.1	<0.3	1.1±0.3	
Romanshorn	2000	<0.3	<0.3	1.1±0.3	

La Figure 4 montre bien que l'activité en ^{239/240}Pu mesurée au Weissfluhjoch est toujours supérieure à celle mesurée à Fribourg car la déposition atmosphérique surfacique (Bq/m²) est supérieure en montagne. Elle confirme que l'activité en pluto-

nium des filtres à air provient du phénomène de resuspension. Cette dernière dépend, pour un emplacement donné, de nombreux facteurs tel que l'âge de la déposition, le régime des vents, la nature du sol et de la couverture végétale ainsi que de la taille des particules associées au radioélément. L'augmentation de l'activité en ^{239/240}Pu (10 nBq/m³) observée au Weissfluhjoch en 2000 suit l'augmentation constatée de l'activité en américium (13 nBq/m³) et pourrait s'expliquer par une diminution de la durée de la saison hivernale durant laquelle la couverture neigeuse empêche la resuspension de particules de sol.

Figure 4

Activité en $^{239/240}$ Pu des filtres à air en plaine et en montagne. Les barres d'erreurs sur les valeurs sont reportées en 2 σ , pour un intervalle de confiance de 95%.

Concentration de plutonium et d'américium dans les eaux

Les mesures ont été effectuées sur des eaux de rivière (Rhône, Rhin et Venoge), des eaux de pluie (Fribourg) et du robinet (Lausanne). La méthode de préconcentration est l'évaporation de fractions prélevées chaque semaine sur toute l'année (Chancy et Fribourg) la précipitation d'hydroxydes de fer sur des prélèvements mensuels (Rhin) et la précipitation d'oxyde de manganèse dans des volumes de 200 l d'eau (Venoge).

Les activités en ^{239/240}Pu sont comparables à celles des années précédentes et l'activité en ²³⁸Pu reste en dessous de la limite de détection. L'activité en américium est conforme à ce qui est attendu pour une déposition provenant des essais d'armes atomiques, sauf dans l'eau de pluie de Fribourg, qui reflète celle de l'air, légèrement augmentée pour ce radioélément en 2000: la déposition humide lors de précipitation a entraîné une partie de la contamination de l'air dans l'eau de pluie.

La mesure de l'activité des isotopes du thorium a été réalisée sur deux échantillons de 200 l d'eau du robinet de Lausanne (IRA). Les résultats indiquent une activité très faible en thorium, avec équilibre des isotopes ²³²Th et ²³⁰Th et une prédominance de l'isotope ²²⁸Th. On constate que le traitement de purification des eaux de consommation (bac de sable, décantation, filtration) est très efficace pour l'élimination des espèces fortement associées aux particules, comme le thorium.

Tableau 4 :	Concentration er	n plutonium	et en	américium	dans l'eau	ı de pluie,	de rivi	ière et c	du robinet	, en
	mBq/m ³ .									

Type d′eaux	Lieu de prélèvement	^{239/240} Pu	²⁴¹ Am	²³² Th	²³⁰ Th	²²⁸ Th
eaux de fleuve	Weil-am-Rhin	2.6±0.9	2.9±0.9			
eaux de fleuve	Chancy	3.2±0.6	4.3±1			
eaux de pluie	Fribourg	3.7±1.0	9.0±0.8			
eaux de rivière	Venoge (l'Isle)	3.8±0.5	n.m.			
Eau de rivière	Venoge (Vufflens-la-Ville)	1.8±0.3	5.7±0.8			
Eau du robinet	Lausanne (IRA)	2.1±0.8	1.3±0.3	8±1	9±1	91±6
Eau du robinet	Lausanne (IRA)	0.5±0.2	1.7±0.4	19±2	17±2	79±6

7.2.4 Conclusions

Les mesures des activités en ^{239/240}Pu, ²³⁸Pu et ²⁴¹Am ont été effectuées sur tous les échantillons présentés dans ce rapport. La mesure de l'activité de l'américium dans les échantillons de filtres à air introduit un paramètre supplémentaire de contrôle de la contamination de l'environnement en Suisse et a permis de détecter une légère augmentation

de l'activité dans l'air de Fribourg. L'analyse multivariables nécessite la mesure de plusieurs radioéléments sur un même échantillon mais permet de mettre en évidence des anomalies qui resteraient autrement cachées, justifiant l'investissement dans ces mesures. Par exemple ces mesures ont permis de montrer que le ¹³⁷Cs mesuré dans les denrées alimentaires (ex: champignons dans le Jura vaudois), attribué par la presse uniquement à l'accident de la centrale nucléaire de Chernobyl, provient en fait principalement des retombées des test d'armes atomiques réalisés dans les années soixante, à l'exception du Tessin et, dans une moindre mesure, du nord de la Suisse orientale. On estime ainsi que dans les sols du Jura vaudois, dont l'activité en ¹³⁷Cs peut aisément dépasser 300 Bq/kg, plus de 50% de cette activité provient encore des retombées des années soixante, alors qu'au Tessin, 90% du ¹³⁷Cs est originaire de Chernobyl. Dans le nord-est de la Suisse, cette proportion varie entre 65% et 85% alors qu'au sud du canton de Berne (Allmendhubel, Gimmelwald, Fahrni), la proportion du ¹³⁷Cs de Chernobyl n'atteint pas 10%. Etant donné l'importance de l'âge de la contamination des sols dans les processus de biodisponibilité des contaminants [15] et dans la modélisation des transferts sol-plantes [10], la distinction entre les sources et l'âge des dépositions doit être établie.

7.2.5 Bibliographie

- [1] Berne, A. ; in « Americium in soil », Environmental Laboratory Methods, March 1996, 201 Varick St. ; N.Y. USA..
- [2] Froidevaux, P., Geering, J.-J., Valley, J.-F., Plutonium and Americium in the Swiss Environment, Eichrom's users group meeting, Paris, 7th December 1998.
- [3] Geering, J.-J., Froidevaux, P., Buchillier, T., Kosinski, M., Valley, J.-F., in « Radioactivité de l'Environnement et doses de Rayonnements en Suisse », OFSP, Division de la Radioprotection, 1999, ch. 7.3.
- [4] Bunzl, K. ; Kracke, W. ; *J.Environ. Radioactivity*, 8, 1988, 1-14.

- [5] Bunzl, K., Kracke, W., Schimmack, W., *J. Environ. Radioactivity, 28*, **1995**, 17-34.
- [6] Hölge, Z., Filgas, R., *J. Environ. Radioactivity,* 27, **1995**, 181-189.
- [7] Krivokhatsky, A.S., Dubasov, Yu.V., Smirnova, E.A., Skovorodkin, N.V., Savonenko, V.G., Alexandrov, B.M., Lebedev, E.L., *J.Radioanal.Nucl.Chem.*, 147, 1991, 141-151.
- [8] Eakins, J.D.; Morgan, A.; Baston, G.M.N.; Pratley, F.W.; Strange, L.P.; Burton, P.J.; *J.Environ.Radioactivity*, 11, **1990**, 37-54.
- [9] Murith, C et al. in « Radioactivité de l'Environnement et doses de Rayonnements en Suisse », OFSP, Division de la Radioprotection, 1998, ch. 3.1
- Bundt, M.; Albrecht, A.; Froidevaux, P.;
 Blaser, P.; Flühler, H.; *Environ.Sci.Technol.*, *34*, **2000**, 3895-3899.
- [11] Cizdziel, J.; Hodge, V.; Faller, S.; *Health Phys. 77*, **1999**, 67-75.
- [12] Albrecht, A., in « The Behavior of Nuclear Reactor Derived Metallic Radionuclides in the Aquatic System of Switzerland », Schriftenreihe der EAWAG, NR.13, 1998, Swiss Federal Institute for Environmental Science and Technology, EAWAG-ETH, CH-8600 Dübendorf.
- [13] Sanchez-Cabeza, J.A.; Molero, J.; *J.Environ.Radioactivity*, *51*, **2000**, 211-228.
- [14] Garcia-Olivares, A., Iranzo, C.E., *J. Environ. Radioactivity, 37*, **1997**, 101-114.
- [15] Zhu, Y.G.; Shaw, G.; *Chemosphere*, *41*, **2000**, 121-128.