Zeitschrift:	Schweizerische Bauzeitung
Herausgeber:	Verlags-AG der akademischen technischen Vereine
Band:	73/74 (1919)
Heft:	12
Artikel:	Ueber die Schüttelschwingungen des Kuppelstangentriebes
Autor:	Müller, Karl E.
DOI:	https://doi.org/10.5169/seals-35688

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 17.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALT: Ueber die Schüttelschwingungen des Kuppelstangentriebes. — Wettbewerb für die Rötibrücke in Solothurn. — Die Holzfeuerung der Lokomotiven. — Wettbewerb zur Ueberbauung des Obmannamt-Areals in Zürich. — Miscellanea: Mustergruppe vom Kleinwohnhäusern in Zürich. Elektrifizierung der Berliner Stadt-, Ring und Vorort-Bahnen. Eine Ausstellung für Kleinwohnungsbau und Siedelungswesen. Elektrifizierung der Arlbergbahn. Denzler-Stiftung. Die Ausstellung für Friedhofkunst

in Lausanne. — Konkurrenzen: Eisenbahnbrücke bei den Arsta-Inseln in Stockholm. Dekorativer Schmuck für den Museum-Neubau in St. Gallen, Grundsatzwidriger Wettbewerb. — Preisausschreiben. Preisfragen der Schläfti-Stiftung. — Vereins-nachrichten: Bündnerischer Ingenieur- und Architekten-Verein. Gesellschaft ehem. Studierender: Geschäftsbericht des Generalsekretärs; Protokoll der XXXV. Generalversammlung mit 50jähr. Jubiläum der G. e. P.; Stelleuvermittlung.

Band 74. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet. Nr. 12.

Ueber die Schüttelschwingungen des Kuppelstangentriebes.

Von Dr. Karl E. Müller, Ingenieur, Zürich.

Das vorliegende Problem und seine Wichtigkeit für den Bau elektrischer Lokomotiven ist den Lesern dieser Zeitschrift durch verschiedene Aufsätze von Prof. Dr. W. Kummer1) bekannt, der auch die Untersuchungen, über die hier berichtet werden soll, angeregt hat. Es handelt sich um die Vorausbestimmung von Bereichen von gefährlichen Drehzahlen ("Schüttelgebieten"), die an Parallel-Kurbelgetrieben oder Kuppelstangentrieben elektrischer Lokomotiven beobachtet wurden. Die gleichen Erscheinungen zeigte ein Versuchmodell, das die A.-G. Brown, Boveri & Cie. in Baden gebaut hat und das von J. Buchli,2) in qualitativer Hinsicht untersucht wurde. Die Firma war so freundlich, uns dieses Modell zwecks Vornahme von quantitativen Versuchen zur Verfügung zu stellen. Mit Rücksicht darauf musste die Theorie von Kummer verallgemeinert werden; dies führt auf Schwingungen eines Systems mit zeitlich veränderlicher Elastizität, für deren Behandlung E. Meissner³) die nötige mathematische Belehrung gegeben hat. Der nachfolgende erste Abschnitt der theoretischen Entwicklungen, die wir der Mitteilung der Versuchergebnisse vorausschicken, dürfte daher als technisches Beispiel für solche Schwingungen auch allgemeineres Interesse beanspruchen.

1. Die Instabilitätsgebiete des spielfreien Kuppelstangentriebes.

a) Ableitung der Differentialgleichung.

Wir betrachten zwei starre Massen mit den Trägheitsmomenten Θ_1 und Θ_2 (Abbildung I), die federnd auf den als starr und spielfrei gelagert angenommenen elastischen Wellen befestigt sind. Jede Welle trägt zwei Kurbeln, die in spannungsfreiem Zustand des Getriebes um 90° gegeneinander versetzt sind. Die verbindenden Stangen sollen massenlos (wie auch die Wellen) und deformierbar sein.

Abbildung 1.

Die elastische Deformierbarkeit ist in der Abbildung durch Federn schematisch angedeutet. Im Ruhezustand soll sein:

$$q_1 = q_2 = q_5 = q_6; \ q_3 = q_4 = q_1 - \frac{\pi}{2}$$

Ein treibendes Drehmoment T, an Θ_1 angreifend, dem im Stillstand ein widerstehendes, an Θ_2 angreifendes Drehmoment W das Gleichgewicht hält, deformiert nun die Konstruktionsteile folgendermassen:

 ¹) Vergl. deren Zusammenfassung in Bd. LXVI, Seite 68 (7.Aug. 1915).
 ²) J. Buchli, Studien über den Kuppelstangenantrieb bei elektrischen Lokomotiven E. T. Z. 1914, Seite 612; im Auszug wiedergegeben in Bd. LXIV, Seite 136 der "Schweiz. Bauzeitung" (19. Sept. 1914).

³) *E. Meissner.* Ueber Schüttelerscheinungen in Systemen mit periodisch veränderlicher Elastizität. "Schweiz. Bauzeitung", Band 72, 1918, Seite 95 bis 98. D_1 und D_3 bestimmen die Verteilung des Gesamtdrehmomentes auf die beiden Getriebehälften; es gilt stets

$$D_1 + D_3 = T$$

im Stillstand. Ferner bedeuten die Elastizitätskonstanten β die im Bogenmass ausgedrückte elastische Verdrehung der betreffenden Konstruktionsteile für ein Drehmoment 1 cmkg. Die Stangenkräfte S_1 und S_2 verlängern die Stangen um

$$\Delta l_1 = f_1 \cdot S_1 \text{ und } \Delta l_2 = f_2 \cdot S_2,$$

wodurch die Grössen f definiert sind. Da ferner, wenn r den Kurbelradius bezeichnet, die Beziehungen bestehen:

$$D_1 = S_1 \cdot r \cdot \sin \varphi_1; \ D_3 = S_2 \cdot r \cdot \sin \varphi_3$$

$$\begin{aligned} \varphi_{1} - \varphi_{2} &= \frac{Al_{1}}{r \sin q_{1}} = \frac{D_{1} \cdot f_{1}}{r^{2} \sin^{2} \varphi_{1}} = \frac{D_{1} \cdot \gamma_{1}}{\sin^{2} \varphi_{1}} \\ \varphi_{3} - \varphi_{4} &= \frac{Al_{2}}{r \sin \varphi_{3}} = \frac{D_{3} \cdot f_{2}}{r^{2} \sin^{2} \varphi_{3}} = \frac{D_{3} \cdot \gamma_{2}}{\sin^{2} \varphi_{3}} \\ \varphi_{5} - \varphi_{1} &= (D_{1} + D_{3}) \beta_{3}' + D_{1} \beta_{1}' \\ - \frac{\pi}{2} + \varphi_{5} - \varphi_{3} &= (D_{1} + D_{3}) \beta_{3}' + D_{3} \beta_{2}' \\ \varphi_{1} - \varphi_{6} &= (D_{1} + D_{3}) \beta_{3}'' + D_{1} \beta_{1}'' \\ + \frac{\pi}{2} + \varphi_{4} - \varphi_{6} &= (D_{1} + D_{3}) \beta_{3}'' + D_{3} \beta_{2}'' \end{aligned}$$

$$(1)$$

worin man sich durch Einführung der neuen Konstanten γ_1 und γ_2 vom Kurbelradius *r* unabhängig macht. Wir möchten betonen, dass die Konstanten γ und β von allgemeinerer Bedeutung sind, als die schematische Abbildung erkennen lässt. Es sind vielmehr drei verschiedene Deformationen berücksichtigt, die der Stangenkraft, dem Drehmoment einer Getriebeseite und dem Gesamtdrehmoment proportional gesetzt werden. Beispielsweise könnte in γ die Durchbiegung der Lagerböcke mitgemessen werden.¹)

Es ist nun das Kennzeichen der statischen Betrachtungsweise, dass sie bei den Gleichungen (1) oder, je nach den konstruktiven Verhältnissen, bei analogen Beziehungen stehen bleibt; nach beliebiger Wahl von $D_1 + D_3$ findet man durch Probieren D_1 und D_3 so, dass diese Deformationsgleichungen erfüllt werden. Sobald jedoch das Getriebe in Bewegung ist, müssen richtigerweise Bewegungs-Gleichungen berücksichtigt werden, die in unserem Falle lauten:

$$\begin{array}{c} T - (D_1 + D_3) = \Theta_1 \frac{d^2 q_5}{dt^2} \\ (D_1 + D_3) - W = \Theta_2 \frac{d^2 q_6}{dt^2} \end{array} \right| \quad . \quad . \quad (2)$$

Nach Einführung der Abkürzungen

$$\beta_1 = \beta_1' + \beta_1''; \ \beta_2 = \beta_2' + \beta_2''; \ \beta_3 = \beta_3' + \beta_3''; \quad (3)$$

gewinnt man aus den Gleichungen (1)

$$\left. \begin{array}{l} q_5 - q_6 = D_1 \, \beta_1 + \beta_3 \, (D_1 + D_3) + \frac{\gamma_1 \, D_1}{\sin^2 q_1} \\ q_5 - q_6 = D_3 \, \beta_2 + \beta_3 \, (D_1 + D_3) + \frac{\gamma_2 \, D_3}{\sin^2 q_2} \end{array} \right\} \ . \ (1a)$$

woraus ferner

¹) Es waren allerdings die Wellen als starr gelagert vorausgesetzt; bei vorhandener Deformation der Lager muss daher gefordert werden, dass die dabei auftretenden Trägheitskräfte genügend klein bleiben.

$$\begin{array}{l} D_{1} = (q_{5} - q_{6}) \times \\ \times \frac{\gamma_{2} + (\beta_{2} + \beta_{3})\sin^{2}q_{3} - \beta_{3} \cdot \sin^{2}q_{3}}{[\gamma_{2} + (\beta_{2} + \beta_{3})\sin^{2}q_{3}] \left(\beta_{1} + \beta_{3} + \frac{\gamma_{1}}{\sin^{2}q_{1}}\right) - \beta_{3}^{2}\sin^{2}q_{3}} \\ D_{3} = (q_{5} - [q_{6}]) \times \\ \times \frac{\gamma_{1} + \beta_{1}\sin^{2}q_{1}}{[\gamma_{1} + (\beta_{1} + \beta_{3})\sin^{2}q_{1}] \left(\beta_{2} + \beta_{3} + \frac{\gamma_{2}}{\sin^{2}q_{1}}\right) - \beta_{3}^{2}\sin^{2}q_{1}} \end{array} \right\} .$$
(4)

Mit Hilfe dieser Bezichungen wird folgende Funktion ψ für verschiedene Winkel φ_1 und φ_3 bekannt:

$$= \frac{D_1 + D_3}{q_5 - q_6} \cdot \frac{\Theta_1 + \Theta_2}{\Theta_1 \cdot \Theta_2} \cdot \cdot \cdot \cdot \cdot \cdot (4)$$

Der Wert ψ stellt im Wesentlichen die vom Drehwinkel abhängige Elastizität des ganzen Triebwerkes dar; wegen des von den Θ abhängigen Faktors ist aber die Dimension das Quadrat einer Winkelgeschwindigkeit und zwar jener der Eigenschwingung des Triebwerkes im Stillstande. Man erhält aus (2)

$$\frac{\frac{d^2 \, q_5}{dt^2}}{\frac{d^2 \, q_6}{dt^2}} = \frac{T}{\frac{\Theta_1}{\Theta_1}} - \frac{\mathbf{I}}{\frac{\Theta_1}{\Theta_1}} (q_5 - q_6) \cdot \psi \cdot \frac{\Theta_1 \cdot \Theta_2}{\Theta_1 + \Theta_2} \\ \frac{\frac{d^2 \, q_6}{dt^2}}{\frac{d^2}{\Theta_2}} = \frac{-W}{\frac{\Theta_2}{\Theta_2}} + \frac{\mathbf{I}}{\frac{\Theta_2}{\Theta_2}} (q_5 - q_6) \cdot \psi \cdot \frac{\Theta_1 \cdot \Theta_2}{\Theta_1 + \Theta_2}$$

 $y = q_5 - q_6$

und nach Einführung der neuen Variabeln

W

142

$$\frac{d^2 y}{dt^2} + \psi \cdot y = \frac{T}{\Theta_1} + \frac{W}{\Theta_2} \cdot \dots \cdot (5)$$

Diese Gleichung beschreibt die relative Bewegung der beiden Massen unter dem Einfluss des treibenden und des widerstehenden Drehmomentes, T und W. In ψ traten sin q_1 und sin q_3 zufolge der Notwendigkeit, die veränderlichen Hebelarme der Stangenkraft auszudrücken, auf. Zu diesem Zwecke kann mit genügender Genauigkeit geschrieben werden:

 $\sin q_1 = \sin \omega t \quad ; \quad \sin q_3 = \cos \omega t$

wenn ω die mittlere Winkelgeschwindigkeit des Kuppelstangentriebes bezeichnet. Damit wird ψ als Funktion der Zeit bekannt und kann leicht auf die Form gebracht werden:

$$p(t) = \frac{a+b\cos 2\omega t + c\cos 4\omega t}{b+q\cos 2\omega t + r\cos 4\omega t} \cdots \frac{\Theta_1 + \Theta_2}{\Theta_1 \cdot \Theta_2} . \quad . \quad (6)$$

mit folgender Bedeutung der neueingeführten Buchstaben: $a = 4\gamma_1 + \beta_1 + 4\gamma_2 + \beta_2$;

$$\left. \begin{array}{c} c = 4\gamma_1 - 4\gamma_2 \\ c = -(\beta_1 + \beta_2) \\ p = 8\gamma_1\gamma_2 + 4\gamma_1(\beta_2 + \beta_3) + 4\gamma_2(\beta_1 + \beta_3) - r \\ q = 4\gamma_1(\beta_2 + \beta_3) - 4\gamma_2(\beta_1 + \beta_3) \\ r = -(\beta_1\beta_2 + \beta_2\beta_3 + \beta_3\beta_1) \end{array} \right|$$
(7)

Der Wert ψ wird somit weder o noch ∞ , sofern die Konstanten des Kuppelstangentriebes endlich sind; für den Spezialfall $\gamma_1 = \gamma_2 = o$ tritt in den Totpunktlagen der Stangen die unbestimmte Form $\frac{o}{2}$ auf.

b) Berechnung der Instabilitätsgebiete.

Nach E. Meissner¹) hat nun die Differentialgleichung (5) folgende Haupteigenschaften: Hat in Gleichung (5) sowohl ψ als auch die rechts stehende Störungsfunktion die Periode ϑ , so besteht im allgemeinen eine periodische, erzwungene Schwingung der Periode ϑ , deren Amplitude endlich bleibt, sofern nicht die gleich zu erwähnenden Grenzfälle vorliegen. Die Eigenschwingung dagegen, die aus der reduzierten Gleichung

folgt, kann als Summe zweier Normalintegrale N_1 (l) und N_2 (t) dargestellt werden, welche der Bedingung genügen:

$$N_1 (t + \vartheta) = \sigma_1 \cdot N_1 (t)$$
$$N_2 (t + \vartheta) = \sigma_2 \cdot N_2 (t)$$

d. h. die sich bis auf einen multiplikativen Faktor σ reproduzieren, wenn die Periodendauer abgelaufen ist. Es gilt die Bedingung: $\sigma_1 \cdot \sigma_2 = 1$

1) loc. cit.

und es wächst die Eigenschwingung über alle Massen, wenn die σ reell sind. Meissner nennt die Schwingung dann *instabil*; für imaginäre σ bleibt die Schwingung innerhalb endlicher Grenzen und heisst dann *stabil*. Zwischen stabilem in instabilem Gebiet besteht der Grenzfall

$$\sigma_1 = \sigma_2 = \pm 1$$

Die Eigenschwingung ist dann entweder eine periodische: $N(t + \vartheta) = N(t)$.

oder eine halbperiodische: N(t + it) = -N(t)

Um die Instabilitätsgebiete zu berechnen, genügt es daher, periodische oder halbperiodische Lösungen der Gleichung 5a aufzusuchen. Aus der Theorie der Integralgleichungen folgt, dass es unendlich viele solcher Lösungen gibt. Zur Berechnung hat Meissner zwei Methoden angegeben:

1. Man kann für die Lösung eine Fourier'sche Reihe ansetzen und die linearen Gleichungen für ihre Koeffizienten weiter behandeln.

2. Wenn ψ in eine Reihe eines kleinen Parameters ε entwickelbar ist, so können auch die Eigenschwingung und die unbekannte Periodendauer in Form solcher Reihen angesetzt und mit Hilfe der Periodizitätsforderung ihre Koeffizienten sukzessive berechnet werden.

Für das vorliegende Problem sind beide Methoden versucht worden. Dabei zeigte sich die zweite an Anschaulichkeit und für numerische Rechnung überlegen. Da in ausgeführten Triebwerken ohne Blindwelle die Elastizität der Stangen, also γ_1 und γ_2 , meist überwiegen und die Unsymmetrie gering ist, so wird in Gleichung (6) b, c, q, r klein gegen a und p. Man entfernt sich also für solche Triebwerke nicht weit von dem gewöhnlich betrachteten Fall zeitlich konstanter Elastizität. Kennzeichnet man den Kuppelstangentrieb durch eine Konstante v_1

$$v_1 = \frac{\beta_1}{\gamma_1}$$

so ist meist $v_1 < 1$. Für $v_1 = 1$ beträgt die zeitliche Schwankung von ψ rund $14 \frac{0}{0}$ um einen Mittelwert und ist selbst für den Extremwert $v_1 = \infty$ kleiner als $34 \frac{0}{0}$. Dies ist der Grund für die gute Konvergenz des nachfolgenden Näherungsverfahrens.

Wir bezeichnen die Umlaufszeit des Kuppelstangentriebes mit ϑ und führen der Kürze halber eine Variable τ ein:

Gleichung 5a schreibt sich jetzt: $\omega^2 \cdot y''(\tau) + \psi \cdot y(\tau) = 0$

oder

$$\frac{d^2 y}{dt^2}(\tau) + \vartheta^2 \cdot \frac{\psi(\tau)}{4\pi^2} \cdot y(\tau) = 0 \qquad . \qquad . \qquad (8)$$

Um ψ in eine konvergente Reihe zu entwickeln, setze man

$$\frac{\mathbf{I}}{4\pi^2} \cdot \frac{a}{p} \cdot \frac{\theta_1 + \theta_2}{\theta_1 \theta_2} = g_0; \quad \frac{\mathbf{I}}{4\pi^2} \cdot \frac{b}{p} \cdot \frac{\theta_1 + \theta_2}{\theta_1 \theta_2} = g_1 \cdot \varepsilon$$

$$\mathbf{I} \quad \varepsilon \quad \theta_1 + \theta_2 \quad \text{and} \quad y = g_1 \cdot \varepsilon \quad \mathbf{I} \quad \mathbf{I}$$

 $\frac{1}{4\pi^2} \cdot \frac{1}{p} \cdot \frac{\alpha_1 + \alpha_2}{\Theta_1 \Theta_2} g_2 \cdot \varepsilon; \quad \frac{1}{p} = g_3 \cdot \varepsilon; \quad \frac{1}{p} = g_4 \cdot \varepsilon \quad]$ indem man $g_1, g_2, g_3, g_4 \leq 1$ und ε möglichst klein annimmt. Dann folgt aus Gleichung (6)

$$4 \pi^2 \psi = \frac{\Theta_1 + \Theta_2}{\Theta_1 \Theta_2} \left(\frac{a}{p} + \frac{b}{p} \cos 2\tau + \frac{c}{p} \cos 4\tau \right) \times \\ \times \left(1 - \left(\frac{q}{p} \cos 2\tau + \frac{r}{p} \cos 4\tau \right) + \dots \right)$$

nach Ausmultiplizieren und Ordnen nach Potenzen von ε wird daraus:

$$\begin{cases} \frac{\psi}{\pi^2} = a_0 + \varepsilon \left(a_1 \cos 2\tau + a_2 \cos 4\tau \right) \\ + \varepsilon^2 \left(a_3 \cos 2\tau + a_4 \cos 4\tau + a_5 \cos 6\tau + a_6 \cos 8\tau \right) \\ + \varepsilon^3 \left(a_7 \cos 2\tau + a_8 \cos 4\tau + \ldots \right) \\ + \ldots \end{cases}$$
(10)

Die Unbekannten ϑ und y werden nun ebenfalls nach Potenzen von ε entwickelt gedacht:

$$\begin{array}{l} \vartheta = a_0 + a_1 \,\varepsilon + a_2 \,\varepsilon^2 + a_3 \,\varepsilon^3 + \dots \\ \gamma(\tau) = \gamma_0(\tau) + \varepsilon \,\gamma_1(\tau) + \varepsilon^2 \,\gamma_2(\tau) + \dots \end{array} \right\} \quad . \quad . \quad (11)$$

Die bekannte Entwicklung (10) und die Ansätze (11) werden nun in die Gleichung (8) eingesetzt und deren linke Seite nach Potenzen von ε geordnet; da die rechte Seite verschwindet, müssen die Koeffizienten jeder Potenz von ε einzeln verschwinden. Man erhält so eine Reihe von Bedingungsgleichungen:

$$\begin{aligned} \frac{d^{2} y_{0}}{dt^{2}} + \alpha_{0}^{2} \cdot a_{0} \cdot y_{0} &= 0 \\ \frac{d^{2} y_{1}}{dt^{2}} + \alpha_{0}^{2} \cdot a_{0} \cdot y_{1} &= -2 \alpha_{0} \alpha_{1} a_{0} y_{0} - \alpha_{0}^{2} y_{0} (a_{1} \cos 2 \tau + \\ + a_{2} \cos 4 \tau) \\ \frac{d^{2} y_{2}}{dt^{2}} + \alpha_{0}^{2} \cdot a_{0} \cdot y_{2} &= -2 \alpha_{0} \alpha_{1} a_{0} y_{1} - \alpha_{0}^{2} y_{1} (a_{1} \cos 2 \tau + \\ + a_{2} \cos 4 \tau) \\ - (\alpha_{1}^{2} + 2\alpha_{0} \alpha_{2}) y_{0} - \\ - 2\alpha_{0} \alpha_{1} y_{0} (a_{1} \cos 2 \tau + a_{2} \cos 4 \tau) \\ - \alpha_{0}^{2} y_{0} (a_{3} \cos 2 \tau + a_{4} \cos 4 \tau + \\ + a_{5} \cos 6 \tau + a_{6} \cos 8 \tau) \end{aligned}$$
(12)

Die sukzessive Berechnung dieser Gleichungen liefert die gesuchten Lösungen mit beliebiger Genauigkeit.

Die erste Annäherung folgt aus der ersten Gleichung mit $y_0 = A \cdot \cos(n\tau - \delta_0); \quad n^2 = \alpha_0^2 \cdot a_0 ... (13)$ worin A und δ_0 die Integrationskonstanten sind.

Nun muss nach Früherem gelten

für die periodische Lösung für die halbperiodische Lösung Um diese Bedingungen zu erfüllen, muss notwendig sein $n = 2, 4, 6, 8 \dots$ für die periodische

 $n = 1, 3, 5, 7 \ldots$ für die halbperiodische

Eigenschwingung. Man erhält also alle Gebiete instabiler Schwingungen, wenn man n die Reihe der ganzen Zahlen durchlaufen lässt. In erster Annäherung ergeben sich statt der Bereiche instabiler Schwingungen nur kritische Drehzahlen, welche den Umlaufzeiten

$$\vartheta_n = \sim \alpha_0 = \sqrt{\frac{n^2}{a_0}} \quad \dots \quad \dots \quad (14)$$

entsprechen. Da die Eigenschwingung während eines Umlaufes des Kuppelstangentriebes im n^{ien} Gebiet n Perioden durchmisst, bezeichnen wir sie im folgenden auch als die "Schwingung n-facher Frequenz".

Die zweite Annäherung folgt aus der zweiten der Gleichungen (12) nach Einsetzen von (13). Man erhält so für y_1 die Gleichung:

$$\begin{array}{c} \frac{1}{2} + n^{2} y_{1} = -2 \alpha_{0} \alpha_{1} a_{0} A \cdot \cos \left(n \tau - \delta_{0}\right) \\ - \frac{\alpha_{0}^{2} a_{1}}{2} A \cdot \left\{ \cos \left[\left(n + 2\right) \tau - \delta_{0}\right] + \\ + \cos \left[\left(n - 2\right) \tau - \delta_{0}\right] \right\} \\ - \frac{\alpha_{0}^{2} a_{1}}{2} \cdot A \left\{ \cos \left[\left(n + 4\right) \tau - \delta_{0}\right] + \\ + \cos \left[\left(n - 4\right) \tau - \delta_{0}\right] \right\} \end{array}$$

Die Lösung besteht aus der Eigenschwingung

 dt^2

$$B \cdot \cos(n \tau - \delta_1)$$

mit *B* und δ_1 als Integrationskonstanten, und der erzwungenen Schwingung. Bezeichnet *R*(*t*) die in GI. (15) rechts stehende Störungsfunktion, so kann mit Hilfe der Methode der Variation der Konstanten für die erzwungene Schwingung der allgemeine Ausdruck

$$\frac{1}{n} \int_{\tau_0}^{\cdot} R(\xi) \sin n \left(\tau - \xi \right) d\xi$$

gewonnen werden; den willkürlichen Wert τ_0 können wir = o setzen. Die Störungsglieder sind hier stets von der Form

$$\cos\left[\left(n+m\right)\tau-\delta\right]$$

Ein solches Glied gibt nach der angegebenen allgemeinen Formel zu folgender erzwungenen Schwingung Anlass:

$$-\frac{\mathbf{I}}{2n} \cdot \frac{\mathbf{I}}{\pm m} \left[\cos\left((n \pm m)\tau - \delta\right) - \cos\left(n\tau - \delta\right) \right] + \frac{\mathbf{I}}{2n} \cdot \frac{\mathbf{I}}{2n \pm m} \left[\cos\left[\left(n \pm m\right)\tau - \delta\right) - \cos\left(n\tau + \delta\right) \right]$$

Hier sind die Ausnahmefälle m = o und $2n \pm m = o$ besonders zu behandeln; im ersten Ausnahmefall ändert sich der erste Term zu

 $+\frac{\tau}{2n} \cdot \tau \cdot \sin(n\tau - \delta)$ im zweiten Fall der zweite Term zu $+\frac{\tau}{2n} \cdot \tau \cdot \sin(n\tau + \delta)$

Nach dieser Vorbereitung kann das vollständige Integral jeweils sofort hingeschrieben werden. Für die zweite Annäherung ergibt sich:

$$\begin{split} v_{1} &= B\cos\left(n\tau - \delta_{1}\right) - 2\alpha_{0}\alpha_{1}a_{0}A \cdot \frac{1}{2n} \cdot \tau \cdot \sin\left(n\tau - \delta_{0}\right) \\ &- \frac{2\alpha_{0}\alpha_{1}a_{0}A}{(2n)^{2}} \left[\cos\left(n\tau - \delta_{0}\right) - \cos\left(n\tau + \delta_{0}\right)\right] \\ &+ \cos\left[\left(n+2\right)\tau - \delta_{0}\right] \cdot \left(-\frac{1}{2n} \cdot \frac{1}{2} + \frac{1}{2n} \cdot \frac{1}{2n+2}\right) \\ &+ \cos\left[\left(n-2\right)\tau - \delta_{0}\right] \cdot \left(\frac{1}{2n+2} + \frac{1}{2n} \cdot \frac{1}{2n-2}\right) \\ &+ \cos\left[\left(n\tau - \delta_{0}\right] \cdot \left(-\frac{1}{2n} \cdot \frac{1}{2} + \frac{1}{2n} \cdot \frac{1}{2}\right) + \\ &+ \cos\left[\left(n\tau + \delta_{0}\right] \cdot \left(-\frac{1}{2n(2n+2)} - \frac{1}{(2n(2n-2))}\right)\right) \\ &- \frac{\alpha_{0}^{2}a_{2}A}{2 \cdot 2n} \left\{ \cos\left[\left(n+1\right)\tau - \delta_{0}\right] \cdot \left(-\frac{1}{4} + \frac{1}{2n-4}\right) + \\ &\cos\left[\left(n\tau + \delta_{0}\right] \cdot \left(-\frac{1}{2n+4} - \frac{1}{2n-4}\right) + \\ &\cos\left[\left(n\tau + \delta_{0}\right] \cdot \left(-\frac{1}{2n+4} - \frac{1}{2n-4}\right) + \\ \end{array} \right\} \end{split}$$

Mit Ausnahme des Gliedes

 $- 2 \alpha_0 \alpha_1 \alpha_0 A \cdot \tau \cdot \sin (n \tau - \delta_0)$

ist y_1 bereits halbperiodisch oder periodisch; somit muss $\alpha_1 == o$

sein, wodurch nach Gl. (11) die zweite Annäherung für ein beliebiges n gefunden ist. Eine Ausnahme tritt ein für n = 1 und n = 2.

$$n = 1$$
: Herrührend vom Term

$$-\frac{a_0 \cdot a_1}{2} \cdot A \cdot \cos\left[\left(n-2\right)\tau - \vartheta_0\right]$$

erscheint in y1 ein Ausdruck

$$-\frac{\alpha_0^{\,9}\,a_1}{2}\cdot A\cdot \frac{\mathbf{I}}{2}\cdot \tau\cdot \sin\left(\tau+\delta_0\right)$$

der ebenfalls τ explizite enthält und somit aus y_1 verschwinden muss. Also gilt

$$- \alpha_0 \alpha_1 a_0 A \tau \sin\left(\tau - \delta_0\right) - \frac{\alpha_0^2 a_1}{2} A \cdot \frac{\tau}{2} \sin\left(\tau + \delta_0\right) = \mathbf{0}$$

woraus

$$\sin \tau \cos \delta_0 \cdot (-4 \alpha_0 \alpha_1 a_0 - \alpha_0^2 a_1) + \cos \tau \sin \delta_0 \cdot (+4 \alpha_0 \alpha_1 a_0 - \alpha_0^2 a_1) = 0$$

Diese Beziehung kann dauernd nur für folgende zwei Fälle stattfinden:

1.
$$\delta_0 = \mathbf{o}$$
 und $-4 \alpha_0 \alpha_1 a_0 - \alpha_0^2 a_1 = \mathbf{o}$
 $\alpha_1 = -\left(\frac{a_1}{4 a_0}\right) \cdot \alpha_0$
2. $\delta_0 = \frac{\pi}{2}$ und $+4 \alpha_0 \alpha_1 a_0 - \alpha_0^2 a_1 = \mathbf{o}$
 $\alpha_1 = +\left(\frac{a_1}{4 a_0}\right) \cdot \alpha_0$

Setzt man den aus Gl. (14) bereits bekannten Wert von α_0 ein, so lautet nun die Umlaufszeit für die zweite Annäherung

$$\theta_1 = \sim \sqrt{\frac{1}{a_0} \mp \varepsilon \cdot \frac{a_1}{4 a_0}} \sqrt{\frac{1}{a_0}}$$
(16)

Die "kritische Drehzahl" aus erster Annäherung verbreitert sich nun zu einem Gebiet, dessen Grenzen durch die beiden Werte von ϑ_1 angenähert gegeben sind. Zu beachten ist ferner, dass die Eigenschwingung an eine bestimmte Phase gegenüber ψ gebunden ist. ϑ_1 ist die kleinste Umlaufszeit, für die ein Instabilitätsgebiet auftreten kann; ihr entspricht die grösste Drehzahl und es handelt sich also um das gefährlichste Gebiet.

[Bd. LXXIV Nr. 12

Das tiefer gelegene, nächste Instabilitätsgebiet mit n = 2 erfordert eine periodische Lösung. Ganz ähnlich findet man hierfür

$$\vartheta = \sim \sqrt{\frac{4}{a_0}} \mp \varepsilon \cdot \frac{a_2}{4 a_0} \sqrt{\frac{4}{a_0}}$$
(17)

Für ein allgemeines $n \ddagger 3$, 4 ergeben sich aus der dritten Annäherung trotz $\alpha_2 \ddagger 0$ nur kritische Drebzahlen; dagegen spielen hier n = 3 und n = 4 eine ähnliche Ausnahmerolle wie n = 1 und = 2 in der vorigen Annäherung. Nach dieser Darlegung des Rechnungsganges betrachten wir noch kurz folgende Spezialfälle:

Es sei $\beta_1 = \beta_2 = 0$ und es wird

$$\psi = \frac{(\gamma_1 + \gamma_2) + (\gamma_1 - \gamma_2)\cos 2\ \omega\ t}{[2\ \gamma_1\ \gamma_2 + \beta_3\ (\gamma_1 + \gamma_2)] + \beta_3\ (\gamma_1 - \gamma_2)\cos 2\ \omega\ t} \cdot \frac{\Theta_1 + \Theta_2}{\Theta_1 \cdot \Theta_2}$$

Die allgemeinen Beziehungen vereinfachen sich, da r = c = ogesetzt werden kann. Hingegen wird für ein symmetrisches Getriebe $\gamma_1 = \gamma_2$, also

$$\psi = rac{rac{\Theta_1 + \Theta_2}{\Theta_1 \Theta_2}}{rac{\gamma_1 + eta_3}{\gamma_1 + eta_3}} = \mathrm{konst}$$

und die harmonische Eigenschwingung hat die Frequenz

$$\nu = \frac{1}{2\pi} \cdot \sqrt{\frac{\gamma_1 + c_2}{\theta_1 \cdot \theta_2}} \cdot \frac{1}{\gamma_1 + \beta_3}$$

Spezialfall II. Starre Stangen.

Es sei $\gamma_1=\gamma_2=$ o und es können dann gegenüberliegende Wellenhälften als starr verbunden gelten. Man erhält

$$\psi = \frac{(\beta_1 + \beta_2) \cdot \frac{\Theta_1 + \Theta_2}{\Theta_1 \Theta_2}}{\beta_1 \beta_2 + \beta_2 \beta_3 + \beta_3 \beta_1} = \text{konst.}$$

und somit eine einzige kritische Drehzahl.

Spezialfall III. Symmetrisches Getriebe.

$$\begin{array}{l} \gamma_1 = \gamma_2 \\ \beta_1 = \beta_2 \end{array}$$

Die "Symmetrie" der beiden Getriebeseiten braucht also nicht geometrisch aufgefasst zu werden; es genügt z. B. für $\beta_1 = \beta_2$, dass die Summe der D_1 proportionalen Deformationen gleich der Summe der D_2 proport. Deformationen ist, gleichgültig, wodurch diese im übrigen bedingt sein mögen. Zum Vergleich verschiedener Triebwerke führen wir zwei Verhältniszahlen ein:

$$\begin{array}{c} v_1 = \frac{\beta_1}{\gamma_1} \\ v_3 = \frac{\beta_3}{\gamma_1} \end{array} \right\} \quad \dots \quad \dots \quad \dots \quad (18)$$

Ausserdem eine mittlere Frequenz¹)

$$v^* = \frac{\omega^*}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{\theta_1 + \theta_2}{\theta_1 \cdot \theta_2}} \cdot \frac{1}{\gamma_1 + \frac{\beta_1}{2} + \beta_3} \quad . \tag{19}$$

Nun kann die Grösse ψ auf die Form gebracht werden

$$\begin{split} \psi &= \omega^{\otimes 2} \frac{a}{p' + r' \cdot \cos 4 \omega t}; \ a' = 8 + 6 v_1 + v_1^2 + v_3 (8 + 2 v_1) \\ p' &= 8 + 8 v_1 + v_1^2 + v_3 (8 + 2 v_1) \\ c' &= - [2 v_1 + v_1^2 + 2 v_1 v_3] \\ r' &= - [2 v_1 v_3 + v_1^2] \end{split}$$

Die Reihenentwicklung vereinfacht sich zu

$$\frac{\psi}{4 \cdot \pi^{2}} = a_{0} + \varepsilon \cdot a_{2} \cos 4\tau + \varepsilon^{2} a_{6} \cos 8\tau + \varepsilon^{3} \cdot \dots \\
a_{0} = g_{0} + \varepsilon^{2} a_{6} + \dots \\
a_{2} = g_{2} - g_{0} g_{4} \qquad \text{worin} \\
a_{6} = \frac{-g}{2} \frac{4}{2} \cdot a_{2} \\
\epsilon g_{4} = \frac{r'}{p'}$$
(19a)

Um die periodischen und halbperiodischen Lösungen zu finden, muss man n die Reihe der geraden Zahlen durchlaufen lassen. Das Gebiet höchster Drehzahl berechnet sich nun mit n = 2 in' der früher dargelegten Weise mit den Grenzen

1) ν^{*} umfasst die beiden Spezialfälle starrer Stangen und starrer Wellen.

$$\begin{cases} \vartheta_2' = \sqrt{\frac{4}{a_0}} \left(1 - \varepsilon \cdot \frac{a_2}{4 a_0} + \varepsilon^2 \frac{5 a_2^2}{64 a_0^2} - \cdot \cdot \right) \\ \vartheta_2'' = \sqrt{\frac{4}{a_0}} \left(1 + \varepsilon \cdot \frac{a_2}{4 a_0} - \varepsilon^2 \frac{9 a_2^2}{64 a_0^2} - \cdot \cdot \right) \end{cases}$$

Da sich a_2 negativ herausstellt, entspricht die Phasenlage $\delta_0 = \delta_1 = \ldots = \frac{\pi}{2}$ der Grenze höherer Drehzahl. Das nächste Instabilitätsgebiet mit n = 4 schrumpft schon beträchtlich zusammen und noch mehr jenes sechsfacher Frequenz. Es gilt:

$$\vartheta_{4} = \sqrt{\frac{16}{a_{0}}} \cdot \left\{ \mathbf{I} - \left[\frac{4}{6} \left(\frac{a_{2}}{4 a_{0}} \right)^{2} + \left(\frac{a_{6}}{4 a_{0}} - 4 \left(\frac{a_{2}}{4 a_{0}} \right)^{2} \right) \right] \cdot \epsilon^{2} + \dots \right\}$$
$$\vartheta_{6} = \sqrt{\frac{36}{a_{0}}} \left\{ \mathbf{I} + \epsilon^{2} \cdot \frac{8}{9} \left(\frac{a_{2}}{4 a_{0}} \right)^{2} + \epsilon^{3} \cdot \frac{8 \mathbf{I}}{3^{2}} \left(\frac{a_{2}}{4 a_{0}} \right)^{3} + \dots \right\}$$

Mit Hilfe der Vergleichsgrösse ω^* schreiben wir die kritischen Winkelgeschwindigkeiten ω für die Grenzen der Instabilitätsgebiete wie folgt:

$$\omega = \frac{2 \pi}{\vartheta} = \omega^* \cdot \sqrt{\frac{a_0}{n^2}} \cdot \frac{1}{1 + \varepsilon \frac{a_1}{a_0} + \varepsilon^2 \frac{a_2}{a_0} + \dots}$$
$$\omega = \frac{\omega^*}{n} \cdot K_n \text{ wo } K_n = \frac{\sqrt{a_0}}{1 + \varepsilon \frac{a_1}{a_0} + \varepsilon^2 \frac{a_2}{a_0} + \dots} \quad (20)$$

 K_n betrachten wir als einen Korrektionsfaktor, der Abb. 2 für verschiedene Kuppelstangentriebe entnommen werden kann. Als Abszisse ist $\frac{v_1}{1+v_1}$ gewählt, um für ein beliebiges v_1 zwischen o und ∞ die Kurven im Endlichen zu haben.

Abbildung 2.

Die Instabilitätsgebiete sind durch Schraffur zwischen ihren Grenzkurven hervorgehoben. Für n = 6 ist das Gebiet sehr schmal. K_0 bedeutet die erste Annäherung. Für $n \ge 6$ liegen die Kurven sehr nahe oberhalb derjenigen für n = 6, sodass auf eine Darstellung derselben verzichtet werden konnte. Diese Gebiete, wie auch schon jenes für n = 6 sind übrigens von geringer praktischer Bedeutung, wie noch gezeigt werden wird. Abbildung 2 gilt für $v_3 = 0$; die gezeichneten Kurven nähern sich nahezu proportional mit. $\sqrt[n]{3}$ dem Worte z

portional mit $\frac{v_3}{1+v_3}$ dem Werte 1.

Die Betrachtung der Diff.-Gleichung (5) lehrt demnach, dass schon im reinen Leerlauf T = W = 0, der Kuppelstangentrieb das Bestreben hat, bei gewissen Drehzahlen Schwingungen grosser Amplitude auszuführen; die gefährlichen Bereiche der Drehzahlen können mit Hilfe der Beziehungen (19) und (20) und Abb. 2 wenigstens für symmetrische Getriebe sofort angegeben werden.

Sind die Drehmomente T und W endliche Funktionen der Zeit, so treten keine neuen gefährlichen Drehzahlen auf, dagegen können die Amplituden der schwingenden Beanspruchung ungünstig beeinflusst werden. (Forts. folgt.)