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Am 17. März 1963 begeht Herr Professor Dr. J. Ackeret, Vorsteher des Instituts für Aerodynamik an der ETH in Zürich,
seinen 65. Geburtstag. Einige Aufsätze aus dem Kreise seiner ehemaligen und gegenwärtigen Mitarbeiter mögen den Dank an
den verehrten Lehrer und herzliche Wünsche an den Jubilaren überbringen. Die Ehemaligen und die Mitarbeiter

The Optimum Operation of Energy-restricted Rockets, Including Relativistic Effects
By Dr. Nicholas Rott, Professor of Engineering, University of California, Los Angeles*)
Herrn Professor Dr. J. Ackeret zum 65. Geburtstag gewidmet

DK 533.6

1. Relativistic analysis

lf the total energy available for the propulsion of a
rocket is restriced while the exhaust velocity may be varied,
it has been shown by Seifert [1] that the rocket Performance
can be improved by oertain «tayloring» of the exhaust speed.
Olds [2] gave the Solution as an exact result of the varia-
tional problem; it weis found that the exhaust speed has to
vary inversely with the mass of the rocket.

In vm» of the rather futuristic character of such de-
vices it imight be instructive to see how these results are
modified in relativistic mechanics. The differential equation
of rocket motion dn the relativistic case was given by
Ackeret [3]; excluding effects of resistance and gravity, it
reads

(1)
du

1 — m2 / c2
dmu
m0

where w is the exhaust velocity relative to the rocket, u is
the rocket speed in the take-off frame of reference, and m0
is the rest-mass of the rocket an the same frame.

Let us now assume that the rocket is provided in the
take-off frame of reference with a certain amount of rest-
energy E0, which is to be used for propulsion. It can be
postulated that the relation between the «consumption» of
rest-energy E0 and rest-mass m0 will depend on w only
(which is assumed to be the same for all particles expelled
by the rocket). In other words, df this relation is to be inde-
pendent of u, it can be determined either in flight or on a
test stand in the take-off System. The energy balance is na-
turally simplest for the test stand case. Let dm,j be the rest-
mass which is expelled and is given the energy dEu; then

(2) dE0 drtij
C2

C2
T/l—102/C2

and the rest-mass of the rocket changes by

dE
c2

(3) —dm0= dm,]

Elimination of drtij gives

(4) dE0 — dm0c2(l(l _ l/i _ M>2 / C2

This Solution holds exactly whether the rocket has a chemical
fuel or an «inert» propellant which is energized by some
source in the rocket; the only necessary assumption is that
all mass particles leave the rocket with the same velocity

w.
As a check, let the energy balance be made for the

rocket in flight by an observer in the take-off fraime, in
terms of rest-mass and rest-energy in the take-off frame.
The observer will notice a decrease of the rest-mass of the

•) Ehemals am Institut für Aerodynamik an der ETH In Zürich.

rocket, —dm0, and an increase in the rest-mass of the
exhaust products, dnij. It can be easily deduced from Ackeret's
fundamental equations that

(5) dm,j =j&- dmo l/l — w2/ c2

holds true independently of u, and in accordance with
Equations [3] and [4]. (In Ackerets'original notaüon, dmo —
dm0i, and dm^ dmoz). The observer will attribute the un-
balance between these quantities to the decrease in rest-
energy dSSand thus confirm Equation [4].

The "lariational problem of the energy-restricted flight
can be formulated as follows: maximize u, from Equation [1],
whdle keeping Eo constant, with m0 varying from moi to
mos. By use of Equatdon [4], the problem is to extremize the
following integral:

(6) / |_^L + X c2 (l —1/1 — i«2 / c2 1 dm0 extr.
J \m0 ' ')

m01

(7)

where X is a Lagrangian multiplier. The Solution is

w k
l/l _ «,2 / c* 8 rtio

(k constant). The classical result of Olds is immediately
confirmed. Solved for w, Equation (7) gives

k
(8)

]/m02+ fc2/c2

To ddscuss the results, it is necessary to express the
constant k by the total energy E0. The algebra foecomes
rather involved and will not be reproduced here. It tüms
out that a practical way to handle the complicated expres-
sions is to introduce a velocity w* by the equation

(9) E0 m0i — m02 c2 1 — T/1 i/c«)

Thus, w* is the «untaylored» constant exhaust speed which
would have been obtained by uniform distrdbution of E0
over the mass moi — »102. It can be shown that

(10) k
w*
M>*2 / C2

/m0i »»02 + (»»01 — m02)2 (w*2/4c2l

The final velocity is found, after lengthy calculations, as
follows: define

TOol—«»02
(11) vo -<r—

|/m0i «102

The final velocity is

(12) m u* (l + w*2/4c2)1/3(l + M*i8ic2y:l

which confirms that lf u* —>- 00 for m02 —*~ 0, then u
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Classically, u—>¦ u*, and Equation (11) represents indeed
the same relation between u* and vo* as would have been
found classically, from Old's analysis.

It may be also of interest to find u>x and m;2, respec-
tively, at take-off and burnout, from Equations (8) and (10);
the expressions are

(13)

(14)

Wl y m0i "i02 + (moi — »n.02)2 (w*2 /4c2)

w* m0i — (m0i — m02) (to*2 / 2c2)

w2 ]/m0im02 + (m0i — »»02)2 (w*2/4c2)

m02 + (m0i — m02) (w*2 /2c2)

The classical limits follow easily as well as the relativistic
effect that for mo2—>0, io2—>c.

2. Discussion
The formulas derived above promise extraordinary gains

in final speed in comparison to the «untaylored» Operation,

if the mass ratio moi/mo2 is large; this conclusion is the same
plpSI'th.e relativistic and for the classical results. If, however,
a touch of realism is added, the discussion takes a different
turn.

First, let us consider the case of chemical rocket
propulsion. The energy limitation 4s serious, but the consump-
tions of energy and propellant mass are connected by a
fundamental constant. Professor E. L. Resler of CorngB, Uni-
versity devised a system which at least in principle can
achieve the tayloring for chemical rockets (private com-
munleation); let the exhaust gases generate electric energy
in the early stages of flight, with a magneto-hydrodynamic
generator inserted; this energy can be stored and added in
the late Operations of the rocket, to increaae w when it helps
the most, nameiK when the rocket mass is «small.

In the case of nuclear propulsion, it is a fundamental
fact that the limitation in total energy is irrelevant. Nuclear
devices now in the planndng stage are serdously power-limi-
ted; this gives rise to a diffeillit set of problems of optimal
Operation, which arigjaimply discussed in the Hterature else-

where.
The capability of tayloring w for a iffficlear devdce im-

plies that the ratio of the consumption of the nuclear fuel
to the consumption of the energized inert mass can be

varied at will. Once such a capability is achieved, designs
will tend towards high energy content at take-off and com-
paratively low amounts of inert fuel mass. This reduces the
ratio moi/mo2 and thereby the effectiveness of tayloring.

To illustrate this point, it suffices to consider the classical

limit, when w* becomes

(15) w*c V 2 So

m0i — w02

and the final speed for optiiram exhaust veloopy Variation
is

(16) uci

Put

V y wi02 mo-

(17) Eo emt, m0a s m/ + mp

and consider the maximum of u,i from Equation (16) with
the take-off weight m0i an the payload mp kept constant,
while the amount m/ of nuclear fuel is varied. The optiimum
is found for

(18) m/ ]/m01 mv—m,
and the maximum of uci is

d9) Mmqi=y2r(i-l/3 "^Ip^^
For constant exhaurt velocity, equal to u>*, the final speed
is

(20) u. 1/371/
r \ m0f

log
mo1

whdch gives a transcendental equation for the maximum with
respect to rtif. The biggest gain of umax from Equation (19)
against the maximum of u, from Equation (20) is found for

-> 0, where it turns out to be 20 %; for mp/moi 0,01,

the gain is only about 10 %. The reason is that m/ according
to Equation (18) is large, and moi/mo2 is not too big.

For best operationi it will be advantageous to dump the
used nuclear fuel, as has been pointed out by Huth [4]. The
above analysis naturally does not apply for such Systems.
However, duanping might possibly be practical only in stages,
in which case even parts of the power plant rniay be ejected.
For each stage, the simple argument holds that tayloring is
effective only for large moi/mo2» i- e., Staging makes tayloring

even less useful.
In order to disouss Huth's case in more detail, let dmo

be eliminated from Equations (1) and (4) to yield

(21)
du wdE.0
¦ u*/c* c2 1 -V1 IC2 / c2

1

m0

It can be concluded that this equation always holds if dE0 is

used to accelerate particles to the velocity w, whether ad-
ditional rest-mass is dumped or not. Thus, du is maximized
for a given dmo at any moment if

wdE„ / dmn
(22) 1

° ° - extr.
c2 (l — yi—te2/c2)

Now, put
dE0

(23) dm0 — dm,j -5— (1 + 9)

where <pdEo/c% is the dumped rest-mass; this replaces Equation

(3), and with Equation (2), which is naturally valid,
Equation (4) will be changed to

(24) dE0 -dmoC*
1 — yi - w2 / c2

1 + <p (1 — yi — wß I c2

The quantity to be extremized in Equation (22) becomes

¦vo

(25)
i+(p^i_yi-i«2/c2)

The Solution is

(26) l_yi-^2/c2 ^ry

extr.

(27) mm\

mp—m/ mp •+¦ m/

in accordance with Huth's result; as noted by Huth, the
Optimum occurs when the dumped mass and the energized
inert mass are equal:

dE0
(28) dm, 9 —jp-

This truly significant optimum shows that exhaust velocity
should not be maximized, but the expression (25), which Is

proportional to a properly defined «specific Impulse». If
Staging is interpreted in the continuous limit (which is
extreme) as a gradually ejected powerplant, <p is further
increased, indicating even lower optimal exhaust velocities.

Huth's optimum is valid in any given moment, and

unless an artificial total energy restriction makes its
continuous applicatton impossible, it is the best Operation for
the whole flight.
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