Zeitschrift:	Schweizerische Bauzeitung
Herausgeber:	Verlags-AG der akademischen technischen Vereine
Band:	85 (1967)
Heft:	14
Artikel:	Einfluss der Dehngeschwindigkeit auf Festigkeitswerte von Armierungsstählen
Autor:	Lampert, P. / Wegmüller, A. / Thürlimann, B.
DOI:	https://doi.org/10.5169/seals-69425

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 16.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

2. Heisswassererzeugung, 3. Wirkung als Expansionsgefäss, 4. Entgasung des Heisswassersystems. Von den Vorteilen einer wirkungsvollen Speicheranlage seien erwähnt:

- 1. Im Falle einer Störung in der Feuerung oder an den Armaturen kann während einer bestimmten Zeit weiterhin Wärme geliefert werden.
- 2. Der meist geringe Wärmebedarf in der Nacht lässt sich durch den Speicher decken, so dass der Dampfkessel abgestellt und Bedienungspersonal eingespart werden kann.
- 3. Es ist auch möglich, den Dampfkessel im Wirkungsgrad-Bestpunkt arbeiten zu lassen und ihn nach erfolgter Aufladung des Speichers abzustellen, wodurch sich Brennstoff-Einsparungen erzielen lassen.
- 4. Bei Nutzbarmachung von Überschusswärme (Abfallkessel oder

Elektrokessel) ist es möglich, den Unterschied zwischen Anfall und Bedarf auszugleichen.

Wegen diesen Vorteilen gehen immer mehr Betriebe, die über eine Heisswasserheizung verfügen, dazu über, einen Heisswasserspeicher einzubauen oder bestehende Speicheranlagen zu vergrössern. Die Firma Escher Wyss hat neuerdings Speicher mit Gesamtvolumen je Apparat bis 208 m³ geliefert. Dass sich dabei interessante Transportund Montageprobleme ergeben, ist aus den Bildern 6 und 7 zu ersehen. Bild 7 zeigt einen Speicher von 208 m³ und 13 atü Arbeitsdruck bei der Montage. Dieser musste an Ort und Stelle fertig geschweisst werden.

Adresse des Verfassers: Dr. R. Ruegg, Escher Wyss AG, Hardstrasse 319, 8005 Zürich.

Einfluss der Dehngeschwindigkeit auf Festigkeitswerte von Armierungsstählen

Von P. Lampert, dipl. Ing., A. Wegmüller, dipl. Ing., und Prof. Dr. B. Thürlimann, Institut für Baustatik, ETH, Zürich DK 620.172:691.873

1. Einleitung

Es ist schon lange bekannt, dass die Dehngeschwindigkeit bei Zugversuchen an Stahl-Prüfstäben einen bedeutenden Einfluss auf die Fliessspannung, Streckgrenze und Zugfestigkeit hat. Entsprechende systematische Versuche mit qualitativen Angaben für Baustähle sind z.B. in [1] und [2] zu finden. Im besonderen wird dort gezeigt, dass die Resultate aus konventionell durchgeführten Werk- und Laboratoriums-Versuchen im allgemeinen bis 15 % über den entsprechenden statischen Werten liegen. Anderseits ist bekannt, dass diese konventionellen Versuchsresultate bis zu 25% unter den Festigkeitswerten liegen, die bei explosionsartig aufgebrachter Belastung erzielt werden (siehe z. B.

Bei der Auswertung von statischen Versuchen an Bauteilen aus Stahl, Stahlbeton und Spannbeton stellt sich die Frage, welche Festigkeitswerte für die Stähle zu verwenden sind. Solche Versuche werden im allgemeinen nicht mit einer konstanten Dehngeschwindigkeit durchgeführt. Im elastischen Bereich ist es durchaus angebracht, auf einer gewählten Belastungsstufe die Last konstant zu halten, um die notwendigen Ablesungen vorzunehmen. Hingegen ist es im unelastischen Bereich viel zweckmässiger, auf einer Belastungsstufe eine bestimmte Verformungsgrösse (z.B. die Durchbiegung) konstant zu halten. Es können dann in aller Ruhe die Beobachtungen gemacht werden. Während dieser Zeit sinkt jedoch die Pressenkraft auf einen statischen Wert ab, der sich relativ rasch, d.h. innerhalb von zwei bis fünf Minuten stabilisiert. Selbstverständlich sind dabei langdauernde Kriechvorgänge nicht erfasst. Zur Auswertung der entsprechenden Versuchsergebnisse sind daher die statischen Festigkeitswerte der Materialien, insbesondere der Stähle notwendig.

Schliesslich werden diese Werte auch zur Berechnung der Tragfähigkeit von Bauteilen und Bauwerken benötigt, die durch statische Lasten beansprucht sind.

Aus diesen Gründen wurde vom Institut für Baustatik, Abt. Massivbau, eine Versuchsreihe mit vier in der Schweiz verwendeten Armierungsstahlsorten durchgeführt. Erstens galt es, den Einfluss der Dehngeschwindigkeit auf die Fliessspannung, Streckgrenze und Zugfestigkeit festzustellen. Zweitens sollte durch Vergleich die ungefähre Abweichung zwischen den statischen Werten (Dehngeschwindigkeit null) und solchen aus konventionellen Routine-Prüfungen festgestellt werden.

2. Definitionen

Es werden die folgenden Begriffe gebraucht:

*Messstrecke l*₀: Ursprüngliche Länge des Abschnittes eines Prüfstabes, über den die Längenänderung $\triangle l_0$ gemessen wird.

Einspannlänge l_e : Ursprüngliche Länge des Prüfstabes zwischen den Einspannbacken der Prüfmaschine. Die an den Prüfstäben angebrachten konischen Verbreiterungen oder angeschweissten Schrauben werden zu den Backen gezählt.

Jochgeschwindigkeit v_j : Distanzänderung $\triangle l_e$ der Einspannbacken pro Zeiteinheit dt.

$$v_j = \frac{d}{dt} \left(\bigtriangleup l_e \right)$$

Dehngeschwindigkeit $\dot{\epsilon}_e$: Durch die Einspannlänge l_e dividierte Jochgeschwindigkeit v_j .

$$\dot{\varepsilon}_e = \frac{v_j}{l_e} = \frac{1}{l_e} \frac{d}{dt} (\triangle l_e)$$

Effektive Dehngeschwindigkeit $\dot{\epsilon}_0$: Durch die Messstrecke l_0 dividierte Längenänderung Δl_0 der Messstrecke pro Zeiteinheit dt.

$$\dot{\varepsilon}_0 = \frac{1}{l_0} \frac{d}{dt} \left(\bigtriangleup l_0 \right) = \frac{d\varepsilon_0}{dt}$$

Fliessspannung σ_f : Spannung, bei der die Belastung trotz zunehmender Dehnung erstmals konstant bleibt. Diese Grenze tritt nur bei naturharten Stählen auf.

Streckgrenze σ_s : Spannung, bei der die bleibende Dehnung $\varepsilon_0 = 0,2\%$ der ursprünglichen Messstrecke l_0 beträgt. Diese Grenze ist die «Ersatz-Fliessgrenze» bei kaltverformten Stählen.

Zugfestigkeit β_z : Nominelle Spannung, bestimmt aus dem Quotienten aus Höchstlast P_{max} und Anfangsquerschnitt F_0 .

Dynamische Fliessspannung σ_{fa} , dynamische Streckgrenze σ_{sa} , dynamische Zugfestigkeit β_{za} : Fliess-, Streck-, Bruchgrenze bei einer bestimmten, von null verschiedenen Dehngeschwindigkeit $\dot{\epsilon}_0$.

Statische Fliessspannung σ_{fs} , statische Streckgrenze σ_{ss} , statische Zugfestigkeit β_{zs} : Fliess-, Streck-, Bruchgrenze bei der Dehngeschwindigkeit $\dot{\epsilon_0} = +$ 0.

Hydraulische Prüfmaschine: Die Belastung wird durch eine hydraulische Presse erzeugt. Die Kraft kann aus dem hydraulischen Druck oder aus einem speziellen Dynamometer hergeleitet werden. Im allgemeinen eignen sich solche Maschinen nicht, um konstante Dehngeschwindigkeiten über dem gesamten Prüfbereich einhalten zu können. Mechanische Prüfmaschine: Die Bewegung der Einspannjoche erfolgt mechanisch, normalerweise durch gegenläufiges Drehen von zwei Spindeln. Ist die Maschine starr gebaut, so lassen sich durch die Steuerung der Spindeldrehzahl entsprechende Dehngeschwindigkeiten einstellen, die über den ganzen Prüfbereich konstant sind. Die Kraftmessung erfolgt mittels eines Dynamometers.

3. Versuchsplanung

Um den Einfluss der Dehngeschwindigkeit auf die Fliessspannung, Streckgrenze und Zugfestigkeit von Armierungsstählen schweizerischer Provenienz zu erfassen, wurden Zugversuche auf einer mechanischen Prüfmaschine vorgesehen. Als einziger Parameter wurde die Dehngeschwindigkeit gewählt. Es wurden vier in der Schweiz gebräuchliche Armierungsstähle verwendet, nämlich:

(B) Box-Stahl, Ø 12 mm, naturhart

(C) Caron-Stahl, Caron-Abmessung

10,9 mm, kaltverformt

(R) Roto-Stahl, \emptyset 12 mm, kaltverformt

(T) Tor-Stahl 42, Ø 12 mm, kaltverformt (Die Buchstaben in Klammern bedeuten die im folgenden verwendeten Abkürzungen)

Alle Stähle einer Gruppe weisen die selbe nominelle Querschnittsfläche auf und stammen aus der gleichen Charge. Pro Gruppe wurden 10 Prüfstäbe geprüft, wobei jeweils für zwei die Dehngeschwindigkeit die selbe war. Die geplanten Dehngeschwindigkeiten sowie die dazugehörige Numerierung der Stäbe sind aus Tab. I, Kol. 1 und 2, ersichtlich. Der grösste Wert entspricht der nach amerikanischen Bestimmungen [4] höchstzulässigen Dehngeschwindigkeit für den Fliessbereich (bei Prüfung mit mechanischer Maschine). Die Dehngeschwindigkeit wurde je Stab während des ganzen Versuches konstant gehalten. Somit konnte zu jeder Geschwindigkeit ein dazu gehörendes SpannungsTabelle I. Numerierung, Dehn- und Jochgeschwindigkeit, Einspannlänge und Messstrecke der Prüfstäbe der vier Stahlsorten B, C, R und T

1 2 3 4 5 Stab-Dehnge-Einspann-Messstrecke Jochgeschwinschwindigkeit nummer länge le lo digkeit έe $v_j = \dot{\varepsilon}_e l_e$ %/min cm cm cm/min B C,R T B.C.R T B,C,R Т 1 und 2 0.3 0.15 0.12 3 und 4 0,6 0,30 0,24 5 und 6 1,2 40 20 40 30 0,60 50 0,48

Bild 1. Prüfmaschine. Rechts Motorenkasten, in der Mitte Zerreissmaschine mit Prüfstab, Lastmesswerk und Potentiometer, links Kommandopult und Schreiber

Dehnungs-Diagramm aufgenommen werden. Die daraus abzulesenden Fliess-, resp. Streckund Bruchgrenzen sind die dieser Dehngeschwindigkeit zugeordneten dynamischen Festigkeitswerte.

Um auch die statischen Werte zu erhalten, wurde während des Versuches die Dehngeschwindigkeit einige Male bis auf null verlangsamt. In wenigen Minuten fiel die Belastung auf die statische Last ab. Durch Vorversuche wurde diese Wartezeit auf 2 Minuten festgesetzt, da nachher kein nennenswerter Abfall mehr festgestellt wurde. Diese statische Last könnte auch dadurch erreicht werden, dass ein Spannungs-Dehnungs-Diagramm extrem langsam aufgenommen würde. Dies ist jedoch viel zu zeitraubend; Vorversuche und auch amerikanische Untersuchungen [2] zeigten, dass selbst niedrige Geschwindigkeiten eine ansehnliche Erhöhung der Festigkeitswerte bewirken.

In Anbetracht der kleinen Zahl der geprüften Stäbe ist es natürlich klar, dass nur ein Aufzeigen des Sachverhaltes und eine Abschätzung der Grössenordnung möglich war.

4. Versuchsdurchführung

4.1. Prüfmaschine

7 und 8

9 und 10

3,0

6.25

Diese Zugversuche wurden auf der neuen, in der Metallabteilung der EMPA stehenden «Epprecht-Multitest Zerreissmaschine ZM 50 A mit Tri-Plot Kompensationsschreiber» ausgeführt (Bild 1). Die beiden vertikalen Spindeln werden mechanisch gedreht. Dadurch verschiebt sich das in diesen Spindeln gelagerte Joch. Seine Geschwindigkeit kann in einem grossen Bereich lastunabhängig eingestellt werden. Die Lastmessung erfolgt mit einem zwischen Prüfstab und Joch in der Stabachse angeordneten induktiven Geber (Bild 1).

Die Verformung kann auf verschiedene Arten gemessen werden. Für diese Versuchs-

serie ist ein Verfahren interessant, das erlaubt, das ganze Spannungs-Dehnungs-Diagramm bis zum Bruch in vernünftigem Massstab in einem Zuge aufs Papier zu bringen. Zu diesem Zweck eignet sich das Mess-Potentiometer, das unter dem Joch befestigt ist (Bild 1) und die Längenänderung der Messstrecke registriert.

1,50

3,125 2,50

1,20

Nach Angabe der Lieferfirma Contraves AG, Zürich, betragen die Messtoleranzen bei der Last $\pm 0,5\%$ und die Reproduzierbarkeit \pm 0,05% vom Skalenendwert (hier 10 t). Bei der Verformung betragen die entsprechenden Werte $\pm 1\%$ und \pm 0,2% vom Endwert (hier 250 mm).

4.2. Prüfstab

Die Einspannlängen und Messstrecken der Prüfstäbe sind aus Tab. I, Kol. 3 und 4, ersichtlich.

Wie aus dieser Tabelle erkennbar ist, wurden für die verschiedenen Stahlsorten unterschiedliche Messstrecken verwendet. Sie ergaben sich aus dem Umstand, dass die Verformungsmessung (Klemmfedern) der unterschiedlichen Bruchdehnung der Stahlsorten angepasst werden musste. Diese beiden Klemmfedern (Bild 1) sind auf der einen Seite durch einen allseitig drehbar gelagerten Stab zusammengehalten und am Prüfstab selbst durch zwei gegenüberliegende Schrauben fixiert. Die Fäden sind am Klemmenarm befestigt, dessen Länge so gewählt wurde, dass die effektive Dehnung verdreifacht wird. Zusammen mit der doppelten Übersetzung des Schreibers wurde die effektive Verlängerung der Messstrecke in sechsfacher Vergrösserung aufs Papier gebracht.

Auf beiden Seiten des Prüfstabes wurden Schraubengewinde Ø 16 mm angeschweisst, die sich in die vorhandenen Muffen der Prüfmaschine einschrauben liessen. Die durch ungewollte Exzentrizität der Schrauben bedingten Biegespannungen erklären ein Abweichen von der elastischen Geraden. Sobald jedoch die äussersten Stabfasern zu fliessen beginnen, verschwinden diese Momente und beeinflussen das Spannungs-Dehnungs-Diagramm nicht mehr.

Der Prüfstab wurde auf die übliche Weise geritzt und damit nachträglich die Stahldehnungen über den Einschnürungsbereich λ_5 , resp. λ_{10} bezüglich des fünf-, resp. zehnfachen Stabdurchmessers bestimmt. Die Gleichmassdehnung λ_{G1} wurde einerseits nach der Formel $\lambda_{G1} = 2 \lambda_{10} - \lambda_5$ berechnet, anderseits auch in einem Abstand von 5 d von der Einschnürung entfernt gemessen.

Die effektive Fläche des Stabes wurde mit der Beziehung $F_{eff} = G/\gamma \cdot l$ und $\gamma =$ 7,85 t/m³ gewichtsmässig berechnet.

4.3. Dehngeschwindigkeit

Eine über den ganzen Bereich konstante effektive Dehngeschwindigkeit $\dot{\epsilon_0}$ zu erhalten, ist auch bei einer mechanischen Prüfmaschine schwierig.

Hingegen ist die Jochgeschwindigkeit v_j konstant einstellbar und lastunabhängig. Es ist deshalb bequem, die durch die Einspannlänge l_e dividierte Jochgeschwindigkeit als Dehngeschwindigkeit \dot{e}_e einzuführen. In Tab. I, Kol. 5, sind die gewählten Jochgeschwindigkeiten zusammengestellt.

Setzt man $\varepsilon_e = \varepsilon_0 + \varepsilon_M$, wobei ε_M die Elastizität der Maschine und die Nachgiebigkeitder Einspannung erfasst, so ist ε_0 immer kleiner als ε_e . Da ε_M positiv ist, ist auch $\dot{\varepsilon}_0$ stets kleiner als $\dot{\varepsilon}_e$. Diese Differenz ist am grössten im elastischen Bereich, in welchem die Spannung nicht von $\dot{\varepsilon}_0$ abhängt. In Bereichen, in welchen die Belastung konstant bleibt, ändert sich ε_M nicht, so dass sowohl über das Fliessplateau wie auch beim Bruch $\dot{\varepsilon}_0$ mit $\dot{\varepsilon}_e$ übereinstimmt. Bei der Streckgrenze ist jedoch $\dot{\varepsilon}_0$ etwas kleiner als $\dot{\varepsilon}_e$. Bei der verwendeten Verankerung liegt die Differenz bei 10%. Es ist deshalb begründet, den interessierenden Fliess-, Streck- und Bruchgrenzen die Dehngeschwindigkeiten $\dot{\epsilon}_e$ zuzuordnen.

Für die Dehnungshalte $\dot{\epsilon}_e = 0$ wurde die Drehung der Spindeln abgestellt, womit das Joch stehen blieb. Es galt zu kontrollieren, dass bei diesem Anhalten keine Dehnungsabnahme auftrat. Dies wäre möglich durch die Elastizität der Maschine und einen eventuellen Schlupf in der Einspannung des Prüfstabes. Zur Verhinderung dieses Schlupfes wurden die unter 4.2. beschriebenen Schraubenverankerungen verwendet. Die Wirksamkeit dieser Methode wurde dadurch kontrolliert, dass bei Halten im elastischen Bereich kein Lastabfall auftrat. Die Rückfederung der Maschine wurde durch Anbringen einer Messuhr zwischen den Einspannbacken überprüft.

Tabelle II. Zusammenstellung der Resultate für Box-Stahl

1	2	3	4	5	6	7	8	9	10	11	12	13
Stab- nummer	Feff	σ_{fd}	σ_{fs}	β_{zd}	β_{zs}	$rac{\sigma_{fd}}{\sigma_{fs}}$	$\frac{\beta_{zd}}{\beta_{zs}}$	λ_5	λ_{10}	λ_{Gl} ¹) gemessen	$\lambda_{Gl} = 2\lambda_{10} - \lambda_5$	ψ
	cm ²	t/cm ²	t/cm ²	t/cm ²	t/cm ²			%	%	%	%	%
B1	1,148	4,11	3,88	5,88	5,66	1,059	1,039	30,3	26,8	21,7	23,3	58,4
B2	1,146	4,15	3,93	5,86	5,62	1,056	1,043	32,8	26,2	17,0	19,6	56,3
B3	1,155	4,25	3,98	5,97	5,68	1,068	1,051	29,3	26,6	20,3	23,9	55,4
B4	1,152	4,24	3,96	5,97	5,66	1,071	1,055	31,5	26,6	21,0	21,7	58,6
B5	1,153	4,28	3,99	5,95	5,63	1,073	1,057	30,2 ²)	26,8 ²)	18,0	23,4	39,4 ²)
B6	1,148	4,19	3,92	5,87	5,55	1,069	1,058	33,3	27,5	20,0	21,7	57,3
B7	1,153	4,25	3,94	5,87	5,53	1,079	1,062	31,3	25,3	19,2	19,3	56,4
B8	1,150	4,07	3,76	5,70	5,35	1,082	1,065	30,9	26,2	18,0	21,5	52,9
B9	1,151	4,25	3,90	5,91	5,52	1,090	1,071	28,7 ²)	$25,2^{2}$)	22,0	21,7	49,6²)
B10	1,153	4,27	3,94	5,91	5,51	1,084	1,073	34,9	27,9	19,2	20,9	55,4
							STREET AS ADDRESS	A STREET CONTROL OF THE OWNER				

¹) Erläuterung im Text unter 5.1.

²) Bruch ausgehend von der Befestigungsstelle einer Klemmfeder

Tabelle III. Zusammenstellung der Resultate für Caron-Stahl

1	2	3	4	5	6	7	8	9	10	11	12	13
Stab- nummer	Feff	σ_{sd}	σ_{ss}	β_{zd}	β_{zs}	$\frac{\sigma_{sd}}{\sigma_{ss}}$	$\frac{\beta_{zd}}{\beta_{zs}}$	λ5	λ ₁₀	λ_{Gl} $^1)$ gemessen	$\lambda_{Gl} = 2 \lambda_{10} - \lambda_5$	ψ
	cm ²	t/cm ²	t/cm ²	t/cm ²	t/cm ²			%	%	%	%	%
C1	1,110	4,96	4,83	5,58	5,37	1,027	1,039	— ²)		3,5	-	58,3
C2	1,111	4,93	4,78	5,58	5,38	1,031	1,037	19,2	12,2	4,4	5,2	63,1
C3	1,110	4,86	4,70	5,57	5,32	1,034	1,047	19,2	12,6	6,1	6,0	71,0
C4	1,110	4,89	4,72	5,66	5,41	1,036	1,046	18,9	12,4	5,0	5,9	63,1
C5	1,106	4,89	4,73	5,64	5,37	1,034	1,050	18,2	12,1	4,9	6,0	61,9
C6	1,111	4,85	4,68	5,62	5,34	1,036	1,052	19,6	12,9	5,1	6,2	64,2
C7	1,106	4,97	4,78	5,69	5,37	1,040	1,060	— ²)	<u> </u>	4,5	an dia Matri	59,4
C8	1,108	4,99	4,77	5,70	5,37	1,046	1,061	— ²)	-	3,9		61,7
C9	1,108	4,97	4,73	5,66	5,32	1,051	1,064	18,5	12,7	5,1	6,9	61,7
C10	1,109	4,87	4,68	5,64	5,31	1,041	1,062	— ²)		4,1		61,7

¹) Erläuterung im Text unter 5.1.

²) Einschnürung nahe der Einspannstelle nach Erreichen der Zugfestigkeit

Tabelle IV. Zusammenstellung der Resultate für Roto-Stahl

1	2	3	4	5	6	7	8	9	10	11	12	13
Stab- nummer	Feff	σ_{sd}	σ_{ss}	β_{zd}	β_{zs}	$\frac{\sigma_{sd}}{\sigma_{ss}}$	$\frac{\beta_{zd}}{\beta_{zs}}$	λ5	λ ₁₀	λ_{Gl} ¹) gemessen	$\lambda_{Gl} = 2\lambda_{10} - \lambda_5$	ψ
	cm ²	t/cm ²	t/cm ²	t/cm ²	t/cm ²			%	%	%	%	%
R1	1,075	5,27	5,12	5,68	5,47	1,029	1,038	15,2	9,3	1,3	3,4	63,2
R2	1,075	5,28	5,11	5,67	5,43	1,033	1,044	14,8	9,2	4,1	3,6	53,3
R3	1,078	5,27	5,08	5,74	5,49	1,037	1,046	18,5	11,4	3,0	4,3	56,8
R4	1,075	5,27	5,11	5,83	5,57	1,031	1,047	18,5	11,2	3,0	3,9	60,0
R5	1,078	5,37	5,16	5,85	5,52	1,041	1,060	16,7	11,0	3,0	5,3	60,1
R6	1,082	5,39	5,17	5,86	5,56	1,043	1,054	17,2	10,5	3,0	3,8	59,3
R7	1,071	5,35	5,12	5,93	5,55	1,045	1,068	16,5	10,1	3,2	3,7	54,3
R8	1,076	5,41	5,17	5,72	5,39	1,046	1,061	19,6	11,1	2,8	2,6	61,1
R9	1,078	5,39	5,10	5,80	5,42	1,057	1,070	20,0	12,5	1,9	5,0	57,8
R10	1,074	5,39	5,13	5,97	5,57	1,051	1,072	16,5	10,2	3,1	3,9	53,2

1) Erläuterung im Text unter 5.1.

5. Versuchsresultate

5.1. Zusammenstellung

In den Tabellen II, III, IV und V sind für jede Stahlsorte die statischen und dynamischen Fliess-, resp. Streck- und Bruchgrenzen, sowie deren Verhältnisse zusammengestellt. Sämtliche Spannungswerte sind dabei auf die gewichtmässig bestimmten effektiven Flächen bezogen. Informationshalber sind noch die üblichen Dehnwerte λ_5 , λ_{10} und λ_{GI} sowie die Kontraktion ψ angegeben. Der Wert für λ_{GI} in Kol. 11 wurde über 10 cm, ausgehend von einem Abstand 5 *d* von der Einschnürung, am längeren Bruchstück gemessen.

In Bild 2 wurde für jede Stahlsorte ein Spannungs-Dehnungs-Diagramm der mittleren Geschwindigkeit schematisch nachgezeichnet. Es ist zu beachten, dass für die verschiedenen Stahlsorten die Dehnung aus Messungen über verschieden lange Messstrecken ermittelt wurde. Deshalb kommt der Einfluss der grösseren Dehnung im Einschnürungsbereich unterschiedlich zur Geltung. Als dynamische Fliessspannung wurde der Mittelwert über das Fliessplateau, als dynamische Streckgrenze der Schnittpunkt der Spannungs-Dehnungs-Kurve mit der um 0,2% verschobenen elastischen Geraden ($E = 2,10 \cdot 10^6$ kg/cm2) angenommen. Speziell an diesen Stellen wurden die Halte der Dehngeschwindigkeit gewählt, so dass die zugehörigen statischen Werte direkt ablesbar sind.

In Bild 3 sind pro Stahlsorte die zehn statischen Fliess-, resp. Streck- und Bruchgrenzen in einem Histogramm aufgetragen. Die Stabnummern sind in das entsprechende Feld eingetragen. Es ist im besonderen ersichtlich, dass der statische Wert nicht von der vorausgehenden Dehngeschwindigkeit abhängig ist.

Zeichnet man die in den Tabellen II, III, IV und V, Kol. 7 und 8, berechneten Quotienten der dynamischen und statischen Festigkeitswerte als Funktion der Dehngeschwindigkeit $\dot{\epsilon}_e$ auf, so ergibt sich Bild 4. Diese Diagramme zeigen die direkte Abhängigkeit der dynamischen Werte von $\dot{\epsilon}_e$. Die dynamischen Fliess-, Streck- und Bruchgrenzen sind umso höher, je grösser die Dehngeschwindigkeit ist.

5.2. Fliessspannung naturharter Stähle

Bei der Aufnahme eines Spannungs-Dehnungs-Diagrammes wird auf der Dehnungsaxe der Mittelwert über die Messstrecke aufgezeichnet. Es sind aber lokal ganz andere Dehnungsverhältnisse vorhanden. Ein Beispiel dafür ist das Fliessplateau eines naturharten Stahles [5, 6]. Werden sehr kurze Stücke innerhalb der Messstrecke beobachtet, so besitzen sie entweder die Fliessdehnung

$\varepsilon_f = \sigma_f/E,$

wenn noch keine Gleitung eingetreten ist, oder sie liegen bereits am Beginn des Verfestigungsbereiches, wenn Gleiten bereits stattgefunden hat. Dazwischen existiert keine andere Dehnung; sind wir z.B. im Spannungs-Dehnungs-Diagramm in der Mitte des Fliessplateaus angelangt, so heisst das, dass die eine Hälfte der Messstrecke am Beginn der Verfestigung steht, während die andere noch gar nicht zu fliessen begonnen hat. Erst wenn auf die ganze Stablänge Fliessen eingetreten ist, wird die nun einsetzende Verfestigung im Diagramm sichtbar.

Dynamische Fliessspannung

Als dynamische Fliessspannung einer bestimmten Dehngeschwindigkeit wird der erreichte Mittelwert über das Fliessplateau eingeführt (Bild 2). Dieser Wert ist nur mit der Angabe der Dehngeschwindigkeit definiert.

Auch die «obere Fliessgrenze» ist ein dynamischer Wert, der dadurch bedingt ist, dass mehr Spannung benötigt wird, um den Gleitprozess einzuleiten, als um ihn aufrecht zu erhalten [5]. Diese Grenze ist weiter abhängig von der verwendeten Prüfmaschine, der Form des Prüflings, usw. Sie kann nicht beobachtet werden, wenn der Fliessvorgang durch einen ungleichmässigen Stabquerschnitt (Rippen), durch Störungen an den Einspannstellen oder durch Eigenspannungen (z. B. aus Abkühlung [7]) beeinflusst ist.

Statische Fliessspannung

Die statische Fliessspannung, welche durch kurze Halte in der Dehngeschwindigkeit erreicht wird (Bild 2), ist von der vorausgehenden Geschwindigkeit und der Prüfmaschine unabhängig. Sie kann auch auf einer hydraulischen Maschine erhalten werden, wenn z. B. durch Beobachtung einer Messuhr das Joch während des Fliessens angehalten wird, indem man die Ölzufuhr drosselt. Dies hat mit Sorgfalt zu geschehen, damit der statische Wert von der positiven Seite her erreicht wird ($\dot{e}_e = +0$) und kein Dehnungsrückgang eintritt.

Bei erneutem Dehnen nach dem Halt steigt die Last vom statischen zum dynamischen Niveau empor. Diese Differenz rührt davon her, dass es einerseits einer erneuten Spannungszunahme bedarf, um neue Gleitebenen auszubilden, und dass anderseits die Ausbildung dieser Ebenen relativ langsam vor sich geht, so dass in der Regel die Gleitnicht mit der Dehngeschwindigkeit Schritt zu halten vermag [5]. Wird nun die Dehngeschwindigkeit plötzlich gestoppt, so bilden sich diskrete Gleitebenen in viskoser Weise trotzdem noch fertig aus, was zu einer Entlastung auf die statische Last führt, da die beiden Einspannbacken unbeweglich bleiben. Die mögliche Abhängigkeit dieser Last von anderen Parametern wie Durchmesser, Einspannlänge, usw. wurde im vorliegenden Programm nicht untersucht.

5.3. Streckgrenze kaltverformter Stähle

Kaltverformte Stähle sind bereits in den Verfestigungsbereich hineingezogene oder -gedrehte Stähle. Das Fliessplateau wird bereits bei der Kaltreckung überwunden. Die Verfestigung ist dadurch bedingt, dass das Gleiten durch immer neue Hindernisse erschwert wird, an denen der Gleitvorgang schliesslich zum Stillstand kommt. Diese Hindernisse nehmen mit zunehmender Deformation an Zahl zu und bestehen vorwiegend aus einer Verspannung der Kristalle an den Korngrenzen. Eingehende Diskussionen über die Verfestigung finden sich in der Literatur ([8, 9], u.a.).

Der Abfall von der dynamischen zur statischen Streckgrenze stellt sich ebenfalls beim Halt in der Dehngeschwindigkeit ein. Es bilden sich auch hier die in Bewegung befindlichen Gleitebenen noch fertig aus, was bei unbeweglichen Einspannbacken zu einer Entlastung auf die statische Last führt. Da sich bei der Streckgrenze die Gleitungen noch nicht gleichmässig über den ganzen Stab erstrecken, ist der Abfall bei der Streckgrenze durchwegs kleiner als bei der Zugfestigkeit (Bild 4). Bei Wiederbelastung ist eine erneute dynamische Spannungszunahme notwendig, um den Gleitprozess in Gang zu bringen (Bild 2).

5.4. Zugfestigkeit und Bruchdehnung

Wird ein Stab genügend weit in den Verfestigungsbereich gezogen, so bilden sich die neuen behinderten Gleitungen gleichmässig

Tabelle V.	Zusammenstel	lung der	Resultate	für	Tor-Stah
------------	--------------	----------	-----------	-----	----------

1	2	3	4	5	6	7	8	9	10	11	12	13
Stab- nummer	Feff	σ_{sd}	σ_{ss}	β_{zd}	β_{zs}	$\frac{\sigma_{sd}}{\sigma_{ss}}$	$\frac{\beta_{zd}}{\beta_{zs}}$	λ_5	λ ₁₀	λ_{Gl} ¹) gemessen	$\lambda_{Gl} = 2\lambda_{10} - \lambda_5$	ψ
	cm ²	t/cm ²	t/cm ²	t/cm ²	t/cm ²			%	%	%	%	%
T1	1,148	4,76	4,63	5,72	5,53	1,028	1,034	18,3	11,8	4,2	5,3	61,5
T2	1,148	4,93	4,80	5,83	5,62	1,027	1,037	18,3	12,0	4,2	5,7	60,4
T3	1,149	4,84	4,70	5,78	5,54	1,030	1,043	18,3	11,9	4,7	5,5	58,4
T4	1,148	4,61	4,46	5,48	5,23	1,034	1,048	18,5	12,5	6,0	6,5	59,4
T5	1,149	5,04	4,87	5,93	5,63	1,035	1,053	19,8	12,7	4,4	5,6	61,5
T6	1,148	4,88	4,72	5,74	5,47	1,034	1,049	20,4	13,3	4,7	6,2	58,4
T7	1,147	4,73	4,53	5,65	5,34	1,044	1,058	19,7	12,9	4,6	6,1	58,4
T8	1,149	4,87	4,68	5,81	5,46	1,041	1,064	— ²)	_	4,8		
T9	1,148	4,94	4,72	5,88	5,51	1,047	1,067	20,0	13,3	4,8	6,6	60,5
T10	1,149	4,74	4,49	5,69	5,31	1,056	1,072	20,0	13,3	5,0	6,6	59,4

weist.

auf die ganze Stablänge aus. Wie erwartet,

unterscheiden sich im Lastabfall bei der

Zugfestigkeit die kaltverformten nicht mehr

wesentlich von den naturharten Stählen.

Offensichtlich ist jedoch der Abfall bei der

Zugfestigkeit kleiner als derjenige bei der Fliessspannung (Bild 4), was auf einen Unter-

schied zwischen den plastischen Verformun-

gen im Fliess- und Verfestigungsbereich hin-

1) Erläuterung im Text unter 5.1.

²) Einschnürung nahe der Einspannstelle nach Erreichen der Zugfestigkeit

Schweizerische Bauzeitung · 85. Jahrgang Heft 14 · 6. April 1967

Bild 3. Histogramme der statischen Festigkeitswerte (zehn Prüfstäbe)

Für die gebräuchlichen Bruchdehnungen λ_5 , λ_{10} und λ_{Gl} wurde in dieser Versuchsserie keine Abhängigkeit von der Dehngeschwindigkeit festgestellt. Ein für die unelastische Verformbarkeit von Stahlbetonbauteilen massgebender Wert ist die Gleichmassdehnung [10], also derjenige Dehnungswert, der bei Erreichen der Zugfestigkeit vor dem Beginn des Einschnürens auftritt. Aus den Tabellen II, III, IV und V ist ersichtlich, dass dieser Wert für die verschiedenen Stahlsorten sehr unterschiedlich ist.

6. Konventionelle Durchführung der Zugversuche

Schliesslich sollte noch der Unterschied zwischen den statischen Festigkeitswerten und den Resultaten aus laufenden Prüfungen abgeschätzt werden, wie sie die Stahlproduzenten oder Prüflaboratorien durchführen. Dazu wurden pro Stahlsorte Werkatteste verlangt und zudem konventionelle Zugversuche durchgeführt.

Die Fliess-, Streck- und Bruchgrenzen nach Werkattest sind in Tab. VI, Kol. 2, zusammengestellt. Diese Prüfungen wurden durchwegs auf hydraulischen Maschinen ausgeführt. Die Resultate wurden auf die effektive Fläche umgerechnet. Wie erwartet, liegen sie deutlich über den mittleren statischen Werten der vorliegenden Versuchsserie, die ebenfalls in Tab. VI, Kol. 4, zusammengefasst sind.

Die konventionellen Zugversuche wurden auf einer hydraulischen Mohr- und Federhaff-Zerreissmaschine ZPD s 10 der EMPA durchgeführt. Je Stahlsorte wurde ein Probestab mit einer Belastungsgeschwindigkeit im elastischen Bereich von 1 kg/mm² pro Sekunde

Bild 4. Verhältnisse der dynamischen zu den statischen Festigkeitswerten bei Fliessspannung, Streckgrenze und Zugfestigkeit in Funktion der Dehngeschwindigkeit

geprüft. Die Ergebnisse sind in Tab. VI, Kol. 3, eingetragen und weichen z. T. vom Werkattest ab, wie aus den Verhältnissen in Tab. VI, Kol. 5 und 6, ersichtlich ist.

Um die effektive Belastungs- und vor allem die effektive Dehngeschwindigkeit ermitteln zu können, wurden die Zugversuche anhand eines Schreibers gezeitet. Die gemessene Dehngeschwindigkeit ist in Bild 5 als Funktion der Zeit und in Bild 6 als Funktion der Spannung dargestellt. Sie nimmt nach Verlassen des elastischen Bereiches gegen den Bruch hin stark zu. In Bild 5 wurde als Nullpunkt der Zeitaxe willkürlich das Erreichen der Fliess- resp. Streckgrenze gewählt. Die über das Spannungs-Dehnungs-Diagramm sehr ungleichmässige Dehngeschwindigkeit ist beim Bruch rund 50 mal grösser als diejenige des elastischen Bereiches und etwa 4, resp. 8 mal grösser als diejenige bei Fliess-, resp. Streckgrenze. Zum Vergleich sind die Geschwindigkeiten auch in Bild 4 eingetragen worden. Daraus ist ersichtlich, dass die Festigkeitswerte infolge der relativ hohen Dehngeschwindigkeit des konventionellen Versuches beträchtlich, d.h. bis 10%,

über den statischen Werten liegen müssen. Da die Werkversuche unter ähnlichen Bedingungen durchgeführt werden, liegen auch diese Resultate entsprechend höher.

In Bild 7 ist die effektive Belastungsgeschwindigkeit $\dot{\sigma}$ als Funktion der Spannung aufgetragen. Wie ersichtlich, ist die Belastungsgeschwindigkeit von 1 kg/mm² · s nur im elastischen Bereich vorhanden, wo sie ohne Einfluss auf die Festigkeitswerte bleibt. Nachher fällt sie sehr rasch ab. Somit führt die Vorschrift $\dot{\sigma}$ = konstant im elastischen Bereich bei Verwendung einer hydraulischen

1		2	3		4		5	5		6	7
	Werkattest		konv. Zugversuch		stat. Festigkeit ¹)				i desiden		
Stahlsorte	σ_{f}^{w} , σ_{s}^{w}	β_z^w	σ_{f}^{k} , σ_{s}^{k}	β_z^k	σ^m_{fs} , σ^m_{ss}	β_{zs}^{m}	$\frac{\sigma_f^w}{\sigma_{fs}^m}, \frac{\sigma_s^w}{\sigma_{ss}^m}$	$\frac{\beta_z^w}{\beta_z^m}$	$\frac{\sigma_f^k}{\sigma_{fs}^m}, \frac{\sigma_z^k}{\sigma_{ss}^m}$	$\frac{\beta_z^k}{\beta_z^m}$	$\frac{\sigma_{fs}^m}{\beta_s^m}, \frac{\sigma_{ss}^m}{\beta_s^m}$
	t/cm ²	t/cm ²	t/cm ²	t/cm ²	t/cm ²	t/cm ²		F 28	Jo 80	PZS	PZS PZS
Box	4,24	6,04	4,28	6,00	3,92	5,57	1,082	1,084	1.092	1.077	0.70
Caron	5,11	5,48	4,95	5,76	4,74	5,36	1,078	1.023	1.044	1.075	0.88
Roto	5,19	5,76	5,20	5,98	5,13	5,50	1,012	1.048	1.014	1.088	0.93
Tor	4,82	6,02	4,83	6,00	4,66	5,46	1,034	1,102	1,036	1,098	0,85

¹) Mittelwerte aus den vorliegenden Versuchsserien zu je 10 Prüfstäben

6 (kg/mm²·sec)

Bild 6. Konventioneller Zugversuch: Dehnungsgeschwindigkeit als Funktion der Spannung

Prüfmaschine nur zu vergleichbaren Resultaten für die Fliess- und Streckgrenze, wenn die gleiche oder eine ähnlich gebaute Maschine verwendet wird. Da es üblich ist, nach dem Erreichen der Fliess-, resp. Streckgrenze den Versuch durch Vergrösserung der Ölzufuhr zu beschleunigen, hängt die Zugfestigkeit zudem von der Bedienung der Presse ab. Unter diesen Umständen ist es ersichtlich, dass die Resultate verschiedener Prüflaboratorien nicht ohne weiteres vergleichbar sind, wenn keine genauen Angaben über die Dehngeschwindigkeiten vorliegen.

7. Zusammenfassung und Schlussfolgerungen

An vier in der Schweiz gebräuchlichen Armierungsstählen Ø 12 mm wurden Zugversuche durchgeführt. Der Zweck dieser Versuche bestand darin, den Einfluss der Dehngeschwindigkeit auf Fliessspannung, Streckgrenze und Zugfestigkeit für diese Stähle zu bestätigen. Deshalb war neben der Stahlsorte die Dehngeschwindigkeit der einzige Parameter. Die Anzahl der Prüfstäbe war begrenzt, so dass nur ein Aufzeigen des Sachverhaltes und der Grössenordnung, nicht aber eine statistische Auswertung oder ein Qualitätsvergleich der verschiedenen Stahlsorten möglich war.

Die Ergebnisse lassen sich wie folgt zusammenfassen:

a) Fliessspannung, Streckgrenze und Zugfestigkeit sind für alle untersuchten Stahlsorten umso höher, je grösser die Dehngeschwindigkeit ist.

b) Die dynamischen Festigkeitswerte müssen durch die Angabe der Dehngeschwindigkeit charakterisiert werden.

c) Die statischen Festigkeitswerte (Dehngeschwindigkeit $\dot{\epsilon} = +$ 0) sind von der vorausgehenden Dehngeschwindigkeit unabhängig.

d) Die bei konventioneller Durchführung der Zugversuche mit hydraulischen Zerreissmaschinen erzielten dynamischen Festigkeitswerte liegen für die geprüften Stäbe \emptyset 12 mm bis zu 10% über den entsprechenden statischen Werten. Sie hängen u.a. auch vom Typ der hydraulischen Maschine und von der Art der Bedienung ab.

Aus diesen Erkenntnissen können folgende Schlüsse gezogen werden:

a) Nur die statischen Festigkeitswerte (d.h. Fliessspannung, Streckgrenze, Zugfestigkeit) verschiedener Stahlsorten sind direkt miteinander vergleichbar.

b) Abschätzungsweise liegen die statischen Festigkeitswerte rd. 10% unter den Werten aus konventionell durchgeführten Zugversuchen.

c) Bei der Auswertung von Versuchen mit statischer Belastung müssen die statischen Festigkeitswerte verwendet werden.

d) Zur Bestimmung der statischen Tragfähigkeit von Bauteilen und Bauwerken aus Stahl, Stahlbeton oder Spannbeton sind die statischen Festigkeitswerte massgebend.

Es sei noch darauf hingewiesen, dass die in diesem Bericht für die vier Stahlsorten gezeigte Tendenz allgemein auch für andere Stähle gilt, so für Baustahl und Vorspanndrähte.

Verdankungen

Die Arbeit wurde am Institut für Baustatik, Abteilung Massivbau, im Rahmen eines Forschungsprogrammes «Torsion und Biegung von Stahlbetonbalken» durchgeführt, welches durch die «Stiftung für wissenschaftliche, systematische Forschungen auf dem Gebiete des Beton- und Eisenbeton-Baues» finanziell unterstützt wird. Die verwendeten Armierungsstähle und die entsprechenden Werkatteste wurden von den Firmen Ferrowohlen, Monteforno, Von Moos und Von Roll kostenlos geliefert. Für die Versuche stellte die Abteilung Metalle (Abteilungs-Vorstand R. Steiner, dipl. Ing.) der Eidg. Materialprüfungsund Versuchsanstalt (EMPA) Personal, Versuchsmaschinen und Messinstrumente zur Verfügung. Für diese Unterstützungen möchten die Verfasser ihren herzlichen Dank aussprechen.

Literatur

- [1] Tall, L. and Ketter, R. L.: On the Yield Properties of Structural Steel Shapes. Fritz Laboratory Report No. 220 A. 33, Lehigh University, November 1958.
- [2] Beedle, L. S. and Tall, L.: Basic Column Strength. «Journal of the Structural Division», ASCE, Vol. 86, No. ST 7, Proc. Paper 2555, July, 1960, p. 139.
- [3] Basler, B.: Die Beanspruchung von Bauwerken durch Nuklearwaffen. «Technische Mitteilungen für Sappeure, Pontoniere und Mineure», 27. Jahrgang, Nr. 2, 3 und 4, 1962/63.
- [4] ASTM Designation: A 370-54 T: Mechanical Testing of Steel Products, ASTM-Standards 1958, Part 3.
- [5] Lay, M. G.: Yielding of Uniformly Loaded Steel Members. «Journal of the Structural Division», ASCE, Vol. 91, No. ST 6, Proc. Paper 4580, December, 1965, Part 1, p. 49.
- [6] Thürlimann, B.: New Aspects Concerning Inelastic Instability of Steel Structures. «Journal of the Structural Division», ASCE, Vol. 86, No. ST 1, Proc. Paper 2351, January, 1960, p. 99.
- [7] Nitta, A. and Thürlimann, B.: Ultimate Strength of High Yield Strength Constructional-Alloy Circular Columns – Effect of Thermal Residual Stresses – Effect of Cold-Straightening. IVBH Abhandlungen, 22. Band, 1962, S. 229.
- [8] Brandenberger, E.: Grundriss der Allgemeinen Metallkunde. Ernst Reinhardt Verlag AG, Basel, 1952.
- [9] Shames, J. H.: Mechanics of Deformable Solids. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. Appendix X: Properties of Engineering Materials, by F. A. Cozzarelli.
- [10] Bachmann, H.: Zur plastizitätstheoretischen Berechnung statisch unbestimmter Stahlbetonbalken. Bericht Nr. 6203-4, Institut für Baustatik, ETH, Zürich, erscheint 1967.

Adresse der Verfasser: Institut für Baustatik, ETH, Winterthurerstrasse 28, 8006 Zürich.

Verfärbungen von Eichenparkett durch Zusatzmittel für Beton und Mörtel DK 694.631.3.004.64

Mitteilungen aus der Holzabteilung der Eidg. Materialprüfungs- und Versuchsanstalt (EMPA), Dübendorf, von J. Sell und H. Kühne

Seit einigen Jahren, in den letzten 10 Monaten in zunehmendem Masse, sind an die EMPA Aufträge zur Beurteilung von Mängeln gelangt, die in eigentümlich dunkelbraun-grauen Verfärbungen an Mosaikklebeparkett aus Eichenholz bestanden. Als Ursache konnte meist festgestellt werden, dass diese ausserordentlich störenden Schönheitsfehler durch alkalische Substanzen aus der Unterlage (Deckenbeton oder Mörtelestrich) hervorgerufen worden waren, die mit den Gerbstoffen des Eichenholzes unter Dunkelfärbung reagierten. Das häufige Auftreten solcher Fälle in der letzten Zeit führte schliesslich zu einer grösseren Untersuchung, deren Ergebnisse im folgenden veröffentlicht werden.¹)

Mögliche Verfärbungsursachen bei Eichenholz und anderen gerbstoffreichen Hölzern

Hölzer mit einem hohen Gehalt an Gerbstoffen (wie Kernholz von Eiche, Edelkastanie und zahlreiche Exoten) verfärben sich bei Kontakt mit alkalischen Lösungen, Dämpfen oder Gasen dunkel. Aber auch gerbstoffärmere Hölzer wie zum Beispiel Esche und Buche

¹) Die Untersuchungen wurden zu Lasten von Krediten ausgeführt, welche der Holzabteilung der EMPA aus dem Fonds zur Förderung der Wald- und Holzforschung, aus einer Spende der Holz- und Waldwirtschaft sowie von einem Unternehmen der Parkettbranche zur Verfügung standen. Für diese Unterstützung sei den Geldgebern an dieser Stelle Dank ausgesprochen. zeigen – allerdings wesentlich schwächer – diese und andere Reaktionen mit Verfärbungserscheinungen, die meist auf einer Autooxidation der Gerbstoffe, in der Regel komplexer Polyphenole, beruhen [Lit. 2 und 3]. Bei der Möbelherstellung nützt man die Gerbstoffreaktion für die Tönung und Färbung («Beizung») des Holzes. So wird zum Beispiel Eiche mit gasförmigem Ammoniak «geräuchert»; häufiger allerdings verwendet man andere Beiz-Chemikalien wie Paraphenyldiamin und Metallsalze. Letztere reagieren – bei Anwesenheit von genügend Feuchtigkeit – mit den Gerbstoffen ebenfalls unter Bildung vielfältiger Farbstoffe. Eine bekannte Erscheinung ist das «tintige», schwarzblaue Verfärben von feuchtem Eichenholz bei Kontakt mit Eisen. Alle diese Färbungen sind verhältnismässig licht- und wasserbeständig [Lit. 2, 3 und 4].

Das charakteristische Bild der besonderen Verfärbungen bei Eichenparkett und die Untersuchung ihrer Ursachen

Mit einer einzigen Ausnahme glichen sich die Parkettverfärbungen, die im letzten Jahr von der EMPA untersucht wurden. Die Ausnahme bestand in einer gleichmässigen, schwachen und nicht störenden Verfärbung der gesamten Parkettoberfläche, die von einem stark ammoniakalischen Parkettleim verursacht worden war. In den übrigen Fällen war das Parkett charakteristisch fleckig verfärbt. Meist an den Rändern und um die Fugen zwischen den einzelnen Lamellen beginnend, färbte sich im Laufe der Zeit zuweilen die gesamte Boden-