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Effect of Upper Side Bands in Traveling Wave Parametric Amplifiers

1. Introduction

The traveling wave type parametric amplifier has been

analyzed by Tien and Suhl [l]1) and others [2...6] who
considered that the circuit carries only signal, idler, and pump
frequencies. It has also been studied by Roe and Boyd [3]

using a nondispersive infinitely wide-band transmission line.
The effect of higher side bands on parametric amplification,
however, is not fully understood.

In this paper parametric circuits containing a successively

increasing number of upper side bands are studied. It
will be shown that the parametric circuit is capable of four
different types of behavior, or four different states, depending

upon the number of side bands it carries. Thus, if the
circuit carries 4 n—1 side bands, an exponentially growing
mode which is synchronous with the pump wave is obtained.
The 3-frequency case described previously [1—6] belongs

to this group (« 1). Circuits which carry An side bands do
not possess a growing mode but have, instead, a nongrow-
ing synchronous mode in which only the even side bands are

present. When the number of side bands is further
increased by one, i.e. An + 1, gain becomes possible but the

growing mode here has a sinusoidally varying amplitude.
Finally, for circuits carrying An + 2 side bands there is a

nongrowing synchronous mode in which only the odd side

bands are present.

Excitation of the different modes of the circuit by an
input at any side band frequency also is discussed. The growing

mode, in particular, can be excited with an appreciable

amplitude only if the input is at either the signal or the

idler frequencies. Upper side bands are coupled weakly to
the growing mode. Consequently the noise performance of
the circuit does not deteriorate appreciably because of their

presence.

In the last section of this paper the solution of the non-
degenerate case is obtained for an infinitely wide-band

parametric circuit. As in the degenerate case, power
supplied by the pump to the system goes into increasing the
side band amplitudes and no exponential gain is present.

2. Parametric Propagating Circuits of Limited
Bandwidth

The equivalent circuit shown in Fig. 1 has been described

by Tien and Suhl [1] and others [2...6]. It represents a
uniform transmission line embedded in a medium having a

nonlinear dielectric constant. When energized by a pump
wave the line capacitance is assumed to be given by

C Co(l +ifeJ« + ^e-Jfl) (1)

(2)

By A. Dayem, Murray Hill
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and co and ß are the frequency and the phase constant of the

pump wave. The modulation constant f depends on the

pump amplitude and the properties of the medium. A
signal of frequency coi aco is applied at the input. Its
amplitude is assumed small compared to that of the pump
so thet its effect on the line capacitance can be neglected.
The propagation along the line can be described, therefore,
by the equation

where
o)t — p z

D2F
bz2

: Lo
b2 (CV)

b?2
(3)

where V V(z, t) is the voltage, Lo and Co are the inductance

and the unperturbed capacitance per unit length, and
ß co ]fÜCo

2.1 The infinite series solution

It is obvious that the solution of Eq. (3) should contain all
side bands of frequencies nai ± mon However, the signal

may be assumed small enough compared with the pump so
that the side bands co ± imoi with m> 1, resulting from
multiple mixing with the signal, can be neglected. Hence one

may write the solution of Eq. (3) in the form

V(z,t) ^ (Vn(z)ei + c.c.) (4)

assuming that the line is perfectly terminated at all frequencies.

(c. c. means complex conjugate.) Substituting Eqns. (4)
and (1) in Eq. (3) and equating terms of equal frequencies,
one obtains

d2Vn xffdF„ 1 t,^-2}(n~«) ß— --S(n-
for

- a)2 ß? (Vn-i + V»+i)
(5)

- oo < n < oo

The complex conjugate of Eq. (5) holds for Vn*. Since we
are primarily interested in growing modes which generally

dVn
satisfy the condition that

dz
\ß V\, the second derivative

in Eq. (5) may be neglected and we get a double infinite
set of differential equations of the first order, namely

dVn
dy (6)

ri Refer to the Bibliography at the end of the article.

<x) (Vn-1 + Vn + l)

for — oo < n < oo

This set possesses solutions of the form exp

which reduce it to the double infinite set of algebraic
equations

£ V„ — j(w — oi)(Vn-l + Vn + l)
for — oo <n < oo.

For any finite range of n equations Eq. (7) can be solved for
£ and the corresponding amplitudes.

2.2 Four different states for a parametric circuit

The wave solution Eq. (4) contains an infinite number of
side bands. In a practical circuit, however, dispersion and

cutoff characteristics may limit the number of side bands

which contribute to the parametric interaction. An adequate

description of the practical case may be obtained by con-
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sidering an idealized low-pass filter which possesses no
dispersion at any frequency lower than its cutoff frequency
wc. Such a filter may be represented by Eq. (7) if all side

bands of frequencies greater than a>c are neglected. This
leads to the finite set of equations

ÇV-M —j (M + a) V-M + 1 =0
CVn +i(n—<x)(V„-l + Vn + i) 0 —M + 1 £n£ TV—1

K,Vn +j(TV— oc) Vn-i =0 (8)

Here M and TV are positive integers given successively by

one of the following pairs of values :

1. the 3-/case with M 0, N 1

2. the 4-/case with M 0, TV 2

3. the 5-/case with M 1, TV 2 etc.

The phrase "«-/case" denotes the case where n side bands

(including pump, signal, and idler) lie within the pass band

of the circuit.
The set of homogeneous equations (8) have nontrivial

solutions if the determinant of the coefficients vanishes.

This leads to a characteristic equation of the form

C'< +Ai CK~2 + + Al Ck'2L + ...+AÄ-/3 0 (9)

when K M + TV + 1 is even, and

f{f*-1 +AiCK~3 + +AlCk-2L'1 + -. +H,a'-i)/3}=0
(9a)

when K is odd. The coefficients A are all real and can be

expressed in the general form

Nl

Al= ^ («1 — <*) («1 — X + 1)...
«1 =—M

Ni+2

y, («2 — «) («2 — a + 1) (10)

«2 11 + 2

N—1

y (nL — »)(«£,— « + 1)

tiL nL-1+2

where TVi TV—2L + 1.

First apply Descartes' rule of signs [7] to determine
whether the characteristic equation has any real positive
roots. A detailed study of Eq. (10) shows that Al is always

k
positive for all values ofL The coefficient Ak/z is negative

when M 2p and TV 2p + 1 (p 0,1,2,...) and is

positive otherwise. From Descartes' rule it follows that
Eq. (9a) has no real positive roots for any values of M and

N while Eq. (9) has one real positive root, if

M 2p and TV 2p + 1 (11)

This result is in agreement with the well-known fact that
exponential gain is possible in a parametric circuit which
carries only signal, idler, and pump frequencies. This 3-/
case is obtained from Eq. (11) for p 0. The next case

which possesses a similar growing mode is the 7-/ case

corresponding to p 1 in Eq. (11). Thus, the same
behavior repeats itself when four more side bands are added.

However, the addition of one more side band to any of the

cases represented by Eq. (11) leads us to those given by

Here the characteristic equation is given by Eq. (9a) which

possesses no real positive roots and thus a different type of
behavior is obtained. Eq. (9a) also represents those cases

given by
M 2/> + 1 and N 2p + 2 (13)

which contain three more side bands than the cases given
by Eq. (11) for the same values of p. It is to be noted that
Eq. (9a) has a zero root which, if substituted in Eq. (8),
gives

Vu. 0 for odd values of « (14)

for those cases given by Eq. (12), and

Vn 0 for even values of « (15)

for those given by Eq. (13). No further information is directly

available from the characteristic equation and one has to
resort to numerical methods to determine the nature of the
other modes of the circuit.

The numerical solution of equations (9) and (9a) gives
the following two results :

1. Eq. (9) has 2 pairs of complex conjugate roots for cases

satisfying

M 2p + 1 and A 2/7 + 2. (16)

2. All remaining roots of either Eq. (9) or (9a) occur as

purely imaginary conjugate pairs.

Lbz Lhz

INPUT

PERFECT
TERMINATION

Distributed parametric circuit

The above discussion clearly demonstrates that the
parametric circuit is capable of four different types of behavior
which repeat themselves sequentially as the number of side
bands is increased. For ease of future reference we may
identify them by the following four "states":

State 1 (M 2p,N 2p + 1):

includes the 3 -f 1-f, and 11-/,. cases and possesses

a growing and a decaying mode varying as e±âv>, where <5 is
real positive and

<p ~ s ß z (17)

M 2p, N 2p + 2 (12)

Both modes are synchronous with the pump wave.

State 2 (M 2p, N 2p + 2) :

includes the 4 -/, 8 -/, 12 -/,. cases and possesses a

constant amplitude synchronous mode satisfying Eq. (14).

State 3 (M — 2p + 1, TV 2/> + 2):

includes the 5-/, 9-/, 13 -/,... cases. It possesses two
growing modes varying as

QÔtp±iyip

i.e. one slower and the other faster than the pump. They may
be combined in a growing wave of periodically varying
amplitude of the form

e<V cos y<p
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State 3 obviously possesses the corresponding decaying
modes

Q-ôq>±jyq>

State 4 (M 2p + l,N 2p + 3):

includes the 6-/, 10-/, 14-/,. cases and possesses a

constant amplitude synchronous mode satisfying Eq. (15).

In addition to the modes mentioned above, the parametric
circuit possesses propagating modes which occur in pairs
and vary like exp (± jy,:</.), i.e. one faster and the other
slower than pump. Each pair can be combined in a wave of
periodically varying amplitude.

STATE (3)IM/ iGINAR Y PART

STATE (1)

STATE 3) REA PART

0 12 3 4 5 6 7
SEV2963? — p

Fig. 2

£ vs. p for the growing modes with « 0.7

The real root of State 1 and the complex root of State 3

are shown in Fig. 2 as a function ofp. It is seen that the gain
decreases in State 1 and increases in State 3 with increasing

p, i.e. as the number of side bands carried by the circuit is

Fig. 3

£ vs. « for the growing modes

increased. Fig. 3 shows the same roots as functions of «. The
maximum gain in either state is achieved when a 1/2.
We notice also that the gain in State 3 does not extend over
the whole range of a.

The imaginary roots show an interesting pattern when

plotted against p as in Fig. 4. Notice that the roots starting
atp pi decrease with slowing rate îoxp>pi. However, it is

evident from Fig. 2 and 4 that the convergence of the
series solution is rather slow and no conclusions can be

drawn about the behavior as p -oo.

Fig. 4

Imaginary roots for the four states with « 0.7

2.3 Relative amplitudes

Denote the K roots of the characteristic equation by
£1, £2,.. £k. Each root defines a possible mode of the

parametric circuit. Each mode, in turn, is composed of a

specific linear combination of the K side bands considered.
The relative amplitudes of these side bands are determined
for the i th mode by substituting £» in Eq. (8) and solving for

El i /. o\ani (18)
V oi

with a0i 1

Here the first subscript refers to the side band frequency and
the second refers to the mode.

Two examples of the relative amplitudes are shown in
Fig. 5 and 6. They belong to the growing mode of State 1

for a 0.3 and a 0.7 respectively. One observes that
the amplitude distributions in Fig. 5 and 6 are not identical
although the corresponding values of a indicate identical
side band frequencies and identical modes. The explanation
of this difference can be seen easily from Eq. (8). It suffices
here to remark that the two distributions would be identical
if the roles of signal and idler were interchanged. It can be
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seen that some of the upper side bands have amplitudes
greater than the signal amplitude. In fact, one may gain
4 db if the output is taken at any side band of frequency
(2n + 1 )<x>—aq rather than at the signal. Thus the growing
mode of State 1 also may be used with advantage as a

frequency up-converter.

i.o

0.5

J__L

01 23456789 10
5EV29640 »- H

Fig. 5

Relative amplitudes of the growing mode in state 1 with « 0.3

Similar relative amplitude distributions are obtained for
the other modes of all the states. For the sake of brevity
they will not be included in this paper.

i.o
0.9
0.8
0.7
0.6
0.5

I 0.4
0.3
0.2
0.1

02 it
_l z

4
Q_

Z>

/
1

1
1

1 1

0 1 2 3 4 5 6 7
SEV2964J D

Fig. 6

9 10

Relative amplitudes of the growing mode in state 1 with a 0.7

2.4 Boundary conditions and excitation of
different modes

The complete solution describing the behavior of a
parametric circuit can be written as a linear combination of all
the possible modes. Using Eqns. (4) and (18) one gets

k N

V(z,t)= ^ Ui&iy ^ Clni eiM» + C. C. (19)
i=1 n=—M

The mode amplitudes Ui are constants to be determined
from the boundary condition.

Let the boundary conditions be defined at z 0 by the

equation

V(0, t) ^ Pn ei(n—x)mt -f- c. c. (20)

Putting z 0 in Eq. (19) and equating it with Eq. (20), one
obtains the K boundary equations

Pn — Uni Ui

i'=l

for—M<n<N
(21)

as well as the complex conjugate set of Eq. (21). It is obvious
that either set is sufficient for determining the K complex
unknowns Ui.

We wish here to emphasize that throughout this analysis
the complex notation has been used to denote real quantities.

The roots obtained turned out in general as imaginary
conjugate pairs. Reference to Eqns. (8) and (18) shows that
the relative amplitudes corresponding to one root are,
except for a difference in sign, identical with those of the

conjugate root. The same holds for the real positive and

negative roots of State 1. Similarly, the amplitudes Ui and

Ui+ l of a pair of conjugate modes are identical except for a

sign difference. Thus, in the following discussion one may
use Un+i to describe a pair of modes corresponding to the

pair of roots 'Çn+i and £21+2.

10'

10-I

10

10

10

-3

10-5

: uhu2

-

: "3. «4

:
«S,"6

:
"7. "8

-

U9>U\0

/ i'11.
u\y

0
SEV2964?

2 3

—p
Fig. 7

Mode amplitudes A vs. p for state 1 with « 0.3

The first point of interest in this section is to find the
degree of excitation of each mode by an input at the signal
frequency only. In other words, one wishes to find Ui which
satisfy the input condition

i-2>
(22)

1=1

k

0 y\ani Ui for H ^ 0
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The results for State 1 are summarized in Fig. 7, which
shows the mode amplitudes against p for a 0.3. At p — 0
(the 3—/ case) only the growing and decaying modes are

present and each has an amplitude equal to one-half. One
finds that Ui gradually decreases as p is increased, and
reaches a value of 0.4 at p 7. Thus the addition of 24

upper side bands which give rise to 24 additional modes has

resulted in a slight decrease in Ui (less than 2 db). It is

obvious from Fig. 7 that all the other modes possess very
small amplitudes (10 db or more below Uî) when excited by
an input at signal frequency. It may be concluded that the

presence of the upper side bands and their associating modes
has little effect on the behavior of State 7 as a parametric
amplifier.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 8

Amplitudes of the growing mode Ui(n> excited by input at frequency
] n — <x I o>

The above remarks point out an important fact which has

been verified by the numerical computations. If one adds

one more side band a new mode is produced and the
properties of the old modes will be modified slightly. Input
power at the frequency of the newly added side band will go
mainly into exciting the new mode. Only a small fraction of
this input power will go into exciting the old modes. This
fact will prove to be quite important in determining the
noise behavior of the parametric amplifier.

The second point of interest in this section is the degree
of excitation of the growing mode due to an input at any of

the side band frequencies. Thus, we wish to find
produced by an input at a frequency (r — c*)to, i.e., which
satisfied the input equations

1

/v

S ari Ui <r>

(23)

0 ; yt a-ni Ui (r), for«:

The results are shown in Fig. 8. It is seen that the growing
mode acquires a very small amplitude when excited by any

upper side band. Further, it is noticed that the idler excites

the growing mode with an amplitude slightly lower or
slightly higher than that due to the signal depending on
whether the idler frequency is higher or lower than the

signal frequency. The growing mode amplitude excited by
the signal decreases as the signal frequency increases. These

remarks will be referred to later when discussing the noise

figure.
2.5 Noise Considerations

Since the growing mode will predominate a short distance

away from the input plane, one may neglect all the other
modes of the circuit when calculating the amplifier noise

figure. Thus, an input at a frequency (r-a) w will excite
the growing mode with an amplitude Ui {r) which can be

Fig. 9

Signal noise figure F vs. »

obtained from Eq. (23). Assuming that each side band
contains the same amount of noise power at the input plane,
the noise figure at the signal frequency is given by

N

V j C7rC) i 2

(24)„ r=—MF — - Ui <°> 2

1058 (A 667) Bull. SEV Bd. 51(1960), Nr. 20, 8. Oktober



Similarly, the noise figure at a frequency (n — a)co is

Y t an11/1 <r> I 2 Yj ' t/llr>

/Tin)
\am Fi<"> I 2 I j 2 (25)

The signal to noise figure F plotted against a is shown in

Fig. 9 where the solid curve is for the 3-/ case (where

F 1 + au1102) and the dashed curve is for the 23-/
case. For any intermediate case the noise figure curve will
lie in the space between the solid and dashed curves. We

observe immediately that the addition of 20 higher side

bands produces but a small change in the noise figure. The

noise figures of the individual side bands are shown in Fig.
10. As expected, the idler noise figure is of the same magnitude

as that of the signal while the noise figures of the upper
side bands are of higher order.

60

db

50

40

20
u.

1

10

F<2 ' F' 0-N

2
—-

F(0)

Fig. 10

Noise figures F(> at frequency | n — x \ w

The noise behavior shown in Fig. 9 and 10 is explained
easily by the facts discussed in the previous section. It was

pointed out that an input power at either the signal or idler
frequencies will go mainly into exciting the growing mode
even when the circuit possesses a great number of modes.
On the other hand, the growing mode receives only a small
portion of the input power if the excitation is at an upper
side band frequency.

3. Propagating Circuits of Infinite Band-Width

It was pointed out in Section 2 that the infinite series

solution cannot be used to describe the behavior when the
circuit band-width becomes infinite. An alternative method
has been described by Roe and Boyd [3] and applied to the

degenerate case where a 1/2. In this section the same
method will be extended to the nondegenerate case.

Let the voltage be expanded in powers of I in the form

where
0 lot — ßz and x ißz (27)

Assuming the capacitance to be given by

C Co (1 + f sin 0) (28)

the wave equation (3) in terms of the new variables gives

5F13_ |"3
30

and
_3 r3
30

[8 ,«„»)+2 _]=°

Ê«si"») + 2-|] y-F
3x2

The solution of (29), subject to the initial condition

F(0,0) sin ad

is found to be

F{x, 6)
sin a T

X Xcosh y + sinh y cos

where F(x, 0) is given by

tan y e 2 tan y

(29)

(30)

(31)

(32)

(33)

Equations (32) and (33), combined for a 1/2 will give

equation (9) in reference [5], Since all the interesting
information is contained in the leading function F [3], the

solution of Eq. (30) will not be considered here.

a=i/3 1/2 2/3

a=i/4 3/4

1/4

5/4

3/4 K
- a.6

7/4 27t

V F(x, 0) +m(x, 0) + (26)

Fig. 11

Voltage at large values of ,v

The function Fis plotted against ad in Fig. 11a and lib
for large x and different values of a. One finds that the
sinusoidal input voltage of Eq. (31) is transformed at large
values of z into a train of sharp pulses. These pulses occur
when 0 is an odd multiple of tt, i.e., one pulse per pump
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cycle independently of the value of a. It is interesting to note
that such a circuit may be used to produce a train of pulses
of very small width and high repetition rate and the pulses

Harmonic content A vs. x for « 0.3

may be position modulated by frequency modulating the

pump.

To get the harmonic content of F, put T 0 + y in (32)
and (33) to get

F sin xO(G(x, 0') cos ay) + cos xO(G(x, 0') sin ay) (32a)

and

f (1 — e-*/2) sin 0'
2 (1 + e-*/2) — (1 — e-*/2) cos 0' '

where 0' =0 — tt and

G(x, 0') (cosh y — sinh y cos 0')

In Eq. (32a) sin ad is multiplying an even function of 0'

while cos ad is multiplying an odd function. Thus the
Fourier expansion of F can be written in the form

OO OO

/ sin «0 ^ an cos «0' + cos a6 ^ bn sin «0'

£}(— 1)" [bn
2

ün sin (« + *) 0 + bn—2-n sin («—«)©]
o

where

(32b)

<70

Qn

Fig. 13

Harmonic content A vs. n for <* 0.7

— J G(x, 0') COS (xrp d0'

0

TC

—J G(x, 0') cos «0' cos <x<p d0' (34)
o

TC

bn — J G(x, 0') sin »0' sin a<p d0'

o

It is worthwhile noting that F contains only components of
frequencies (n±a)co which makes it similar in form to the

infinite series solution expressed in equation (4). It is to be

expected that the function F[ as well as the higher order
terms in the expansion (26) will contain components of
frequencies (n±ma)a>. Although these functions might
contribute small corrections to the terms included in (32b),
it seems that no important information is lost if they are

neglected.

The amplitudes (bn + an)l2 and (b„ — an)/2 were
obtained by numerical integration of equations (34) and are
shown in Fig. 12 and 13 for a 0.7 and 0.3 respectively.

Here, as in the degenerate case, energy supplied by the

pump does not produce exponential gain but rather
produces a wave whose harmonic content becomes richer as it
propagates along the transmission line. Again it is noticed
that the amplitudes of the different side bands are higher,
the smaller the value of a. This bears some similarity to the
results shown in Fig. 5 and 6.
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Theoretische Betrachtungen
über den Einsatz eines parametrischen Verstärkers bei Radio-Teleskopen

Von W. Druey, Winterthur, und H. Rickenbach, Zürich

1. Verfahren für die Ermittlung der von einem schwarzen

Strahler herrührenden Strahlungsintensität

Definition einer äquivalenten Antennentemperatur

Eine Antenne mit der Absorptionsfläche A und dem

Wirkungsgrad j? gibt bei Ausrichtung auf einen
punktförmigen, unendlich weit entfernten schwarzen Strahler
innerhalb eines relativ schmalen Frequenzbandes B an einen

angepassten Verbraucher die Nutzleistung Pn ab:

Pn v A B S'
S' Strahlungsintensität pro Hz Bandbreite

Ein anstelle der Antenne eingesetzter Widerstand Ra
würde bei Anpassung die Rauschleistung Pr :

Pr k TB
abgeben. Damit Pr Pn wird, muss der Widerstand Ra
die Temperatur

tjAS'
kTa

besitzen. Ta wird im folgenden die äquivalente
Antennentemperatur oder kurz Antennentemperatur genannt. Sie ist
ein Mass für die empfangene Strahlungsleistung.

Die von der Antenne abgegebene Nutz-Rauschleistung
wird durch die Zuleitung zur Meßstelle um den Faktor a
verringert, und die Zuleitung steuert entsprechend ihrer
Temperatur Tl und dem Leistungsabschwächungsfaktor a
ein zusätzliches Rauschen bei, so dass die an der Meßstelle
auftretende Rauschleistung einer Temperatur Ta
entspricht. Ta berechnet sich zu:

Ta a Ta + (1 — ü)Tl

Differenzmessverfahren nach Dicke

Beim Differenzmessverfahren nach Dicke wird, wie Fig. 1

zeigt, der Empfängereingang periodisch zwischen Antennenzuleitung

und einer Rauschquelle bekannter Leistung
umgetastet, so dass am Ausgang des Zwischenfrequenzver-
stärkers ein rechteckförmig moduliertes Rauschen auftritt.
Beträgt die Temperatur der durch einen Widerstand
gebildeten Rauschquelle Tk und kommt durch den Empfänger
eine der Temperatur Te entsprechende Rauschleistung hinzu,

so ändert die Rauschleistung am ZF-Ausgang zwischen
den Werten

Pa k[TT + TE]BgE (1)
und

Pk k [Tk + Te\ B gE (2)
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gE ist der Leistungsgewinnfaktor und B die Bandbreite des

Empfängerhochfrequenzteiles. Te ist die Temperatur, welche

ein am Eingang des Empfängers befindlicher angepasster
Widerstand besitzen müsste, um die im Empfänger
entstehende Rauschleistung zu simulieren.
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Fig. 1

Differenzmessverfahren nach Dicke

Rr Rauschquelle, z. B. Kohleschichtwiderstand

Das modulierte Rauschen wird mittels eines linearen
Gleichrichters gleichgerichtet. Die entstehende «Gleich»-
Spannung ändert periodisch zwischen Werten, die |ZPa und
Vpk proportional sind. Dem nachfolgenden Niederfrequenzteil

wird somit eine Rechteckspannung geliefert,
deren Amplitude proportional

/Ta' + Te — ]/ Tk + Te (3)

ist. Mittels eines NF-Bandfilters wird aus der Rechteckspannung

die Komponente mit der Grundfrequenz
herausgesiebt. Ein Endverstärker führt das nun sinusförmige
Signal einem phasenabhängigen Gleichrichter zu, so dass

am Ausgang der Empfangsanlage eine Gleichspannung
entsteht, welche für Ta > Tk positiv und für TT < Tk negativ

ist.

2. Problemstellung

Die Strahlungsintensitäten, welche noch gemessen werden

sollen, entsprechen vielfach äquivalenten
Antennentemperaturen von nur einigen °K. Demgegenüber liegt die

Rauschtemperatur eines Empfängers mit Mischstufe am
Eingang bei etwa Te 1300 °K.

Der Einfluss dieses hohen Eigenrauschens wird zwar
durch die Anwendung des Differenzverfahrens erheblich
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