
Computers for VLSI Design

Autor(en): Lamb, P.

Objekttyp: Article

Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association Suisse des Electriciens, de l'Association des
Entreprises électriques suisses

Band (Jahr): 78 (1987)

Heft 11

Persistenter Link: https://doi.org/10.5169/seals-903871

PDF erstellt am: 22.07.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-903871


CAD Systems

Computers for VLSI Design
P. Lamb

The choice of computer systems for
VLSI Computer-Aided Design (CAD)
is enormously wide. In this article,
the selection of computer systems
is looked at from the point of view
of the typical CAD tasks which are
performed in VLSI design and what
sort of hardware can be effectively
used in the major areas of the
design problem. Finally, the
problems of maintaining a mixed
computer environment, and the tradeoffs

which must be made in such an
environment, are briefly addressed.

Die Auswahl an Computersystemen.

die sich für den Entwurf (CAD)
von VLSI-Schaltungen eignen, ist
gross. In diesem Beitrag werden
Auswahlkriterien besprochen, die
sich aus den typischen Hard- und
Softwareaufgaben beim VLSI-

Design ergeben. Es werden auch
kurz die Probleme einer gemischten
Computerumgebung sowie die
Kompromisse, welche diese
verlangt. besprochen.

Le choix des systèmes d'ordinateurs,

qui conviennent pour l'assistance

à la conception de circuits
VLSI, est considérable. Discussion
de ses critères, qui résultent des
tâches typiques concernant le
matériel et le logiciel. Bref aperçu
des problèmes d'un environnement
mixte de l'ordinateur et des
compromis à admettre.

In deciding on the computing
resources needed for VLSI design, it is

important first to look at the tasks
which are commonly done in VLSI
computer-aided design (CAD), and
the computing resources which are
desirable to carry out the task. In the
following the CAD area is divided into
three major groups: VLSI circuit and
layout design, simulation and layout
verification.

1. VLSI circuit and
layout design
Table I shows this area divided in

two major applications: graphic entry
programs and programs for conversion

of symbolic (so-called "sticks")
layout into VLSI mask geometry.

1.1 Graphic entry programs and
graphics devices

Graphic entry programs are typically
conventional two-dimensional

drawing programs, with drawing on
multiple layers. The ability to represent

multiple layers is less important
for schematic capture than for layout,
although it may be desirable to handle
and display logically distinct parts of
the schematic on different layers and
in different colours, or in different line
styles on monochrome devices.
Schematic capture applications tend
towards line graphics, while layout pro-

Table I
VLSI circuit and
layout design

grams use filled areas far more,
especially filled and pattern-filled rectangles.

True vector graphics devices have
almost disappeared from the market
for VLSI CAD applications, so we will
concentrate here on the characteristics
of raster graphics devices. The resolution

of a displayed image is a result of
the digital resolution of the stored raster

image, the quality of the digital/
analog converters and video amplifiers

in the graphics interface and
monitor and the quality of the monitor
tube itself. Low cost is usually an
indicator that the quality of one or more of
the key components is lower than
desirable. High cost does not always
indicate the reverse.

The quality of color monitors varies
considerably. It is a deciding factor on
the strain placed on a designer working

with such a system. The main
variables are the resolution of the final
image, the amount of flicker, the size of
the screen and environmental factors
such as the type of lighting, sources of
reflection, and noise produced by the
monitor and any other associated
hardware.

The type of image displayed by
VLSI layout editors is also such that
low quality in any of these areas is
accentuated. Typically, the image
displayed contains large numbers of
vertical and horizontal edges, so that any
distortion of the image shape is imme-

Problem area Algorithm style Computation needs

Schematic capture

Layout editing

Graphics

Graphics

Moderate CPU-screen
bandwidth
Moderate to high
CPU-screen bandwidth,
colour.

Symbolic layout compaction Large, complex data structures Fast integer arithmetic,

array indexing and

pointer manipulation;
large real and virtual

memory spaces.

Address of the author
Peter Lamb, dipl. Ing., Institute for Integrated
Systems, ETH-Zentrum, 8092 Zürich.

612 Bulletin ASE/UCS 78(1987)11,6 juin



CAD Systems

diately noticeable. The edges delineate
areas of high colour contrast, so that
any small misalignment of the red,
green and blue components of the
image results in bands of the incorrect
colour at these boundaries. Finally there
are often large areas which should be
of constant colour (such as the
background of the image), which sometimes

are not constant when displayed.
All of these factors are relatively
unimportant for displays of natural scenery,

where there are fewer long,
straight edges, weaker colour contrast
and usually no large areas of constant
colour.

In order to display a flicker-free
image the monitor should have a high
scan rate (70 Hz or more) and not use
interlacing. Displays with a scan rate
which is a multiple of the mains power
supply should be avoided, since their
flicker is particularly bad in rooms
with artificial lighting. Interlacing
should be avoided, since this can cause
extremely bad flicker for particular
types of pattern. A pattern which is

made up of horizontal lines on every
second scan line of an interlaced
display is most disturbing. Monochrome
displays can reduce this problem by
using screen phosphors with a long
time constant, but this is usually not
possible for color screens.

In general, smaller monitors render
a sharper and better aligned picture
than larger monitors. However, as the
cost of memory decreases, and more
resolution becomes available from the
digital hardware, smaller monitors
begin to approach the limits of the
visibility of small graphic objects (lettering

in particular).
Graphics application software is

now demanding higher data band-
widths between the CPU and the
graphic display. Graphic entry programs
become annoying when there is an
appreciable delay between a user action
(typing a key, or "pointing" using a

mouse or graphics tablet) and the reaction

of the system. This is often the
case when the user communicates over
a serial line at limited speed, and the
application is running on an
overloaded timesharing system. It is in this
area where graphics workstations
should excel. In such a workstation,
the CPU is local, so there is no competition

for the CPU from other users,
the raster graphics device is usually
memory-mapped so that it can be
accessed at full CPU speed, and there is
often hardware assistance for graphics
operations.

The most popular devices for
graphic input are the graphic tablet and
the "mouse". The graphic tablet consists

of a special surface and either a

stylus or a small box which can be
moved over the surface in order to
indicate position. The stylus or box
(puck) has buttons to indicate when
the coordinates shown should be
transmitted to the application
program. Mice, in the computer graphics
sense, come in two varieties: one uses a
mechanical movement sensor, and can
be used on any surface that is not too
smooth, and the other variety uses an
optical sensor which must be used over
a special surface. The main difference
between the mouse and the graphic
tablet is that the same position on the
graphic tablet always indicates the
same position on the graphics screen,
where the mouse returns only relative
position. The two devices are quite
similar in their use apart from the fact,
that a tablet can be used with an
offscreen command menu (by using an
overlay on the tablet surface) and a
mouse can be effectively used in a
much smaller space.

1.2 Symbolic layout compaction
Symbolic layout is becoming a more

widely used mechanism for constructing
a VLSI mask layout. This method

requires that the user lay out an
approximate view of the Final mask
layout. This approximate or symbolic
layout consists of transistors, wires
and contacts only, laid out on an undi-
mensioned grid. The Final mask details
and the spacing between the elements
is then calculated by program, a
symbolic layout compacter.

When an entire chip is constructed
in this manner, the amount of data
which is processed by the compacter is

Table II
Simulation

enormous. Compaction of the Flint-
stone1 datapath e.g. takes approximately

MVi hours, requires more than
100 Mbyte of virtual memory space on
a computer with 8 Mbyte of physical
memory, and, not surprisingly, pages2
heavily (about 600 000 page faults).
Similar experiences have been noted
for other chips using this technique.

The computation requirements for
this task are for a large virtual address
space, in order to deal with the
problem at all, a large physical memory
space in order to reduce the amount of
paging activity and so use the CPU
speed effectively, and fast disks for
when the paging occurs. For the
compaction mentioned above, a Sun
3/160C workstation with 8 Mbyte
memory, running SunOS (Sun's version
of the Unix operating system) was
used. Paging took place remotely over
Ethernet on a Sun file server. This con-
Figuration falls somewhat short of the
ideal, because of the relatively small
amount of memory available, and the
indirect access to the paging device.

2. Simulation
Simulation plays an important role

in VLSI design. The requirements on
analytical and event-driven simulators
are listed in Table II.

1 This 20 000 transistor microprocessor, which
is being developed in the Institute for Integrated
Systems, ETHZ, is described by the article by T.
von Eicken, also in this issue.

2 Since the virtual memory used is so much
larger than physical memory, program pages
must be frequently exchanged between main
memory and disk.

Problem area Algorithm style Computation needs

Process Numerical analysis Fast floating point pro¬
cessing, vector processDevice

Numerical analysis
ing.
Fast floating point
processing, vector processCircuit

Numerical analysis
ing.
Fast floating point
processing, vector processing.

Gate/switch Event-driven Fast integer arithmetic,

RTL/architecture Event- or clock-driven

array indexing and

pointer manipulation.
Fast integer arithmetic,
array indexing and

pointer manipulation.

Bulletin SEV/VSE 78(1987)11, 6. Juni 613



CAD Systems

2.1 Floating-point intensive
simulation
VLSI wafer processing simulation,

device modelling in two and three
dimensions and circuit analysis, particularly

transient analysis are large
consumers of CPU time in VLSI design.
The algorithms used in these simulators

are generally linear algebraic
manipulations of large sparse matrices3,
and so are typically heavy users of
floating-point arithmetic. These problems

are often amenable to calculation
on vector processors such as the Cray,
or less expensive "near-supercomputers"

like the Alliant and Convex.
However, careful analysis of the

application programs with program flow
tracing software is necessary (in order
to find the computationally intensive
parts of a program) before deciding on
one of these machines, since the
performance of vector processors heavily
depends on the existence of easily vect-
orizable operations on long vectors or
arrays. If the problem does not have
these characteristics, the performance
of the machine may be disappointing
in comparison to conventional
computers of similar cost.

Most programs written for conventional

processors will need some
rewriting in order that a vector processor
can approach its maximum
performance. This will usually consist of
inserting compiler directives in the code
in order to permit the compiler to
vectorize loops which in the most general
case are not strictly vectorizable. For
example:

SUBROUTINE MULT (A, B, C, N)
REAL A(N), B(N), C(N)
DO 101 1,N

10 A(I) B(I) * C(I)
RETURN
END

At first sight this FORTRAN
subroutine looks perfect for vectorization;
but consider a call of this subroutine
as:

REAL X(100)
CALL MULT (X(3), X(2), X(l), 98)

Since the formal parameters of
MULT now correspond to actual
parameters which are parts of the same
array and therefore overlapping in
memory, the result returned by a vector
processor will be different from that

3 matrices with a large number of zeros.

returned by a conventional computer.
The compiler, then, should not
automatically vectorize MULT. A
programmer must decide that MULT is
not used in such a peculiar manner
anywhere in the program which will
use the subroutine. In a large program,
and for routines less simple than
MULT, this is not always an easy matter.

Occasionally, a program may run
faster if selected pieces of code are not
automatically vectorized. Since there
is usually a significant setup time for
the vector hardware (filling and
emptying the vector pipeline), small loops
may run faster if they are not vectorized.

The compiler should recognize
this automatically if the length of the
loop is known at compile time and not
vectorize if the loop length is too small.
If the loop length can only be
determined at run time, then the decision
must be made by the programmer.

A third change that may need to be
made is inversion of some program
loops:

One way to loop:

DO 101 1,10000
DO 10 J 1,4

10 A(I,J) - B(I,J) + C(I,J)
The other way...

DO 10 J 1,4
DO 101 1,10000

10 A(I,J) B(I,J) + C(I,J)

The second loop will vectorize far
better than the first (it will also have
better paging behavior on a conventional

computer).
Deciding between a conventional

and a vector processor depends on the
amount of computation used by
programs which can be vectorized, on the
extent of modifications which need to
be made to the applications in order to
use the power of the vector processor
and, of course, the relative costs of
conventional machines and vector
processors.

Table III
Layout verification

2.2 Event-driven simulation
Event-driven simulation generally

has different characteristics from
analytical simulation. By simplifying the
model used in the simulation to
transistor switches or to gate level or higher

abstractions, the concentration on
floating-point arithmetic and on solution

of the whole circuit at each time
point moves to solution of only those
parts of the circuit which are changing,
to discretized values for nodes and
often discretized time intervals.

As the level of simulation gets higher,

the main computational load
moves from iterative floating-point
operations on large sparse arrays to
event list manipulation and discrete
evaluation of node and device lists,
now effectively randomly accessed under

the control of the event manager.
Vectorization of such programs is
difficult, special floating-point hardware
helps little (even if it helps speed up
integer multiplication and division, too).
What is needed with current compiler
technology is simply the fastest integer
operations possible on conventional
computers.

Virtual address space is also not
such a great problem: switch-level
simulation of the Flint Stone processor
mentioned earlier causes no particular
problems for our computer systems,
apart from Speed. Our testing of low-
cost vector machines so far has been
disappointing for problems like this
and the symbolic compaction
mentioned earlier.

3. VLSI layout verification
Before fabrication, VLSI Layouts

must be checked for consistency
against design rules. This includes
checking the layout geometry, extracting

the circuit netlist and checking this
netlist for electrical consistency (Table
III).

Problem area Algorithm style Computation needs

Geometrical check

Circuit extraction

Polygon algebra

Polygon algebra

Fast sorting of large
files, fast disk I/O, fast

integer/bit manipulation.

Fast sorting of large
files, fast disk I/O, fast
integei/bit manipulation.

Electrical consistency check Complex data structures Fast integer arithmetic,

array indexing and

pointer manipulation.

614 Bulletin ASE/UCS 78(1987)11,6 juin



CAD Systems

Geometrical checking and circuit
extraction for VLSI handle large
amounts of data. Most algorithms for
these tasks require that the layout data
is sorted in at least one axis, but once
this is done, the amount of input data
in the program at any one time is simply

all objects crossing a narrow band
which moves across the chip: as it
moves, objects are read in and
discarded as needed. The sort operation is
often one of the more time-consuming
parts of this process, and requires an
efficient sorter, capable of handling
large data collections, and fast disk
I/O support on the computer. Electrical

consistancy checking requires the

program to trace through the electrical
netlist to find transistors which are not
properly connected to the circuit. This
requires similar processing capabilities
to digital simulation of the circuit.

4. Miscellaneous
Format conversion between various

data formats used in VLSI design tools
is an uninteresting but vital part of any
design system built up from parts
obtained from different suppliers (and
sometimes from the same supplier). In
general it requires fast disk I/O, since
the files are often fully expanded
representations of the design, and so
quite large. Fast conversion is needed
between representation in the input
file and a common internal representation

and between this internal form
and the output form. This is doubly
important if the conversion goes
through a common external representation

in a two-stage conversion
process. This two-stage conversion
between formats reduces the number of
conversion programs required to cover
all possible format conversions, but at
the cost of a double conversion each
time.

5. Conclusion
A the moment it appears that there

is no single computer which recom¬

mends itself to the solution of all the
processing problems of VLSI CAD.
Workstations are effective for graphic
input, moderate-size digital simulations

and small analog simulations.
Conventional mainframe computers
can cover large digital simulations,
analog simulations of subsystems and
tasks which require high I/O bandwidth

either for file operations or paging.

Super-computer architectures do
not always provide a cost-effective
coverage of computing tasks which are
not vector based, such as symbolic
layout compaction and event-driven
simulations. Once a mixed solution is
needed, the problems of communication

and compatibility between the
computers become the main impediment.

This can be attacked only by
covering the three following problems
a. compatibility of communications

hardware and protocols,
b. reduction of training and other

overheads by the use of a common
operating environment,

c. the use of portable high-level
languages and language environments
in software written for use on more
than one type of machine.

The third problem here has been so
much discussed that I hesitate to add
more to this almost-won argument.
Important here is that the language
environment, especially its run-time
libraries are portable, as well as the
language constructs themselves. The other
two problems can be approached in
two ways. One is to restrict the choice
of computers to one manufacturer, in
the knowledge that while the machines
may today be a cost-effective choice,
they may not remain so, and the cost
of a changeover to another manufacturer

may be very high. The other is to
select a mixed hardware solution and a
common operating and networking
system. At the moment this is reasonable

only with the Unix operating
system and TCP/IP networking protocols

on Ethernet hardware. This allows
a very wide choice of hardware
possibilities from personal computers

through to the fastest supercomputers;
Unix is available for almost all
computer systems, either as the only, or as
an alternative operating system.

Sometimes Unix, because of its
portability, does not use the full hardware
capability fo operating system support
available for a machine—this is similar

to the lower speed obtainable from
a high-level language compiler in
comparison to assembly coding. Portability

in computer systems is rarely without

a small efficiency penalty.
The tendency in the workstation

market is clearly towards Unix. The
cost of developing a new operating
system is so high that it cannot be
undertaken by the relatively small
companies involved in this market,
especially when they are under strong pressure

for continuous hardware
improvement.

An example of a mixed
computing system for VLSI
design
The hardware spectrum in the Institute

for Integrated Systems, ETH
Zurich, is not very broad—there are
machines from two manufacturers —DEC
and Sun Microsystems. Currently, the
upgrade of the VAX 11/785 to some
high-performance machine is being
considered. Computers from the two
manufacturers already represented
come into consideration, of course,
but also "near-supercomputers" and
high-performance conventional
computers from other suppliers. Experience

with benchmarking some of these
alternative machines, and of porting
software between VAX and Sun (both
running Unix) has been convincing
that there are relatively few problems
to be expected in introducing another
computer manufacturer.

4 3 VAX 11/785, 2 microVAX, 35 Sun
workstations, 5 Sun file Servers and 2 Symbolics LISP
machines.

Bulletin SEV/VSE 78(1987)11, 6. Juni 615


	Computers for VLSI Design

