Zeitschrift: Schweizerische Lehrerzeitung
Herausgeber: Schweizerischer Lehrerverein

Band: 88 (1943)

Heft: 46

Anhang: Erfahrungen im naturwissenschaftlichen Unterricht : Mitteilungen der

Vereinigung Schweizerischer Naturwissenschaftslehrer: Beilage zur Schweizerischen Lehrerzeitung, November 1943, Nummer 6 = Expériences acquises dans l'enseignement des sciences naturelles

Autor: Jecklin, L. / Klaesi, P.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

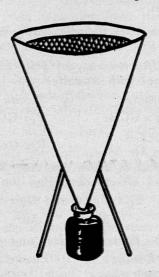
Download PDF: 28.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ERFAHRUNGEN

IM NATURWISSENSCHAFTLICHEN UNTERRICHT

Expériences acquises dans l'enseignement des sciences naturelles mittellungen der vereinigung schweizerischer naturwissenschaftslehrer beilage zur schweizerischen lehrerzeitung


NOVEMBER 1943

28. JAHRGANG . NUMMER 6

Ein Apparat zum Fangen von Collembolen (Urinsekten)

Von L. Jecklin, Mädchengymnasium Basel.

In der neuesten Nummer der Revue Suisse de Zoologie (1943) beschreibt H. Gisin in einer Arbeit über die Oekologie der Collembolen einen Apparat zum Fangen der Springschwänze (Collembolen). Da wohl die meisten Lehrer des Biologieunterrichtes an Gymnasien die Urinsekten erwähnen, scheint es mir angezeigt, diese äusserst einfache Fangmethode in den

«Erfahrungen» zu beschreiben. Auch in dem hübschen Büchlein von K. von Frisch: «Zehn kleine Hausgenossen» (Erf. 1941, Nr. 6; 42, 2 und 43, 2) ist den Urinsekten (Silberfischehen und Wasserspringschwanz) ein Kapitel gewidmet und hie und da lesen wir vom Gletscherfloh, der bei massenweisem Auftreten Schnee und Eis dunkel färben kann. So war ich sehr erfreut, zu erfahren, dass mit den einfachsten Mitteln Collembolen gefangen werden können. Der Fang geschieht nach H. Gisin mit dem Berlesetrichter (siehe Figur). Dieser besteht aus Blech oder Karton und besitzt eine Tiefe von ca. 50 cm und eine obere Oeffnungsweite von 30 cm. Ich baute einen kleineren Metalltrichter mit Metallsieb und der Fang von Collembolen ging damit recht gut. Die Proben (ca. 1/2 bis 1 Liter Erde, Moos, Rinde etc.) werden auf das oben angebrachte Sieb aus Kanevas (1,5 mm Maschenweite) ausgebreitet. Das untere Ende des Trichters wird in ein mit Alkohol gefülltes Gläschen gestellt. Das Sieb wird nun 2 bis 4 Tage an die Sonne gestellt. Da die Springschwänze lichtscheu sind, springen sie durch die Maschen des Netzes und den Trichter hinunter direkt in den Alkohol. So finden sich oft Hunderte von Tierchen im Alkohol¹). Zu beachten ist, dass das unten hingestellte Fläschchen verdunkelt werden muss, damit kein Licht von unten her in den Trichter gelangt. Da gelegentlich feine Erdpartikel mit hinunterfallen, empfiehlt H. Gisin die verunreinigten Proben in ein Gemisch Glycerin-Wasser (1:1) zu giessen. Erde und Holzteilchen sinken darin rasch ab, während die obenauf schwimmenden Tierchen leicht mit der Pipette «abgerahmt» werden können. Gisin sammelte auf diese Weise gegen 1000 Proben mit insgesamt etwa 200 000 Individuen. Man erhält durch diese Fangmethode auch einen Begriff von der Menge der Urinsekten, welche in einem Liter Erde leben. In Alkohol kann man sie beliebig lange Zeit aufbewahren.

Mathematische Aufgaben zur Vererbungslehre

Von A. Günthart, Kantonsschule Frauenfeld.

Die Schüler unserer Oberreal-Abteilung bringen mathematischen Aufgaben stets eine ganz besondere Hochachtung entgegen. Darum stelle ich gelegentlich Aufgaben, wie die folgenden:

A. Das Biffensche Weizenbeispiel.

Ertragreicher, d. h. dichtähriger Weizen, der jedoch homozygot begrannt, d.h. schwer dreschbar ist, wird mit lockerährigem, aber grannenlosem gekreuzt. In wieviel Prozent der F₂-Generation erscheint die günstige Merkmalsverbindung und ist dieselbe konstant (= bei Inzucht rein züchtend), wenn erfahrungsgemäss Grannen über Grannenlosigkeit dominieren, das Merkmalspaar dicht-locker, aber sich intermediär vererbt?

Wir bezeichnen den Erbfaktor für Grannen mit G, denjenigen für Grannenlosigkeit mit g, den Erbfaktor (das Gen) für Dichtährigkeit mit D, den für lockere Aehren mit d. Da das erstgenannte Merkmalspaar sich dominant-rezessiv, das zweite intermediär vererbt, so schreiben wir:

$$G > g$$
, $D = d$

Wir verwenden die üblichen Bezeichnungen: $P_K = K\ddot{o}$ rperzellen und $P_G = G$ eschlechtszellen (Gameten) der Parental-(Eltern-, Stamm-)generation, $F_{1K} = K\ddot{o}$ rperzellen und $F_{1G} = G$ eschlechtszellen der ersten Filialgeneration (des Bastards oder Hybrids), $F_{2K} = K\ddot{o}$ rperzellen der durch Inzucht (Geschwisterkreu-

¹⁾ Es fällt, wenn man z.B. Komposterde nimmt, noch manch anderes Getier in die Spiritusflasche: Milben, Insektenlarven, kleine Würmer usw. und es ist dankbar, einen Schüler alles untersuchen und ihn beurteilen zu lassen, wohin die Tiere «gehören». Auch Bestimmungsübungen kann man hier machen lassen. — Die Maschenweite des Drahtsiebes wählte ich allerdings etwas enger, weil sonst zu viel Erde ins Sammelglas fiel. (G.)

zung) aus den F, entstandenen zweiten Filialgeneration.

Lösung:

$$egin{array}{ll} P_{\mbox{\tiny K}}\colon & GGDD imes ggdd \\ P_{\mbox{\tiny G}}\colon & GD \overline{} gd \\ F_{1\,\mbox{\tiny K}}\colon & GgDd \end{array}$$

100 % (Uniformitätsregel) begrannt-halbdicht

	E.	J					
$\mathbf{F}_{1\mathrm{G}}$		GD Gd		gD	gd		
Q	GD	GGDD begrannt dicht	GGDd begrannt halbdicht	GgDD begrannt dicht	GgDd begrannt halbdicht		
	Gd	GGDd begrannt halbdicht	GGdd begrannt locker	GgDd begrannt halbdicht	Ggdd begrannt locker		
	gD	GgDD begrannt dicht	GgDd begrannt halbdicht	ggDD grannenlos dicht	ggDd grannenlos halbdicht		
	gd	GgDd begrannt halbdicht	Ggdd begrannt locker	ggDd grannenlos halbdicht	ggdd grannenlos locker		

In den 16 Feldern des Punnettschen Quadrates stehen die F_{2K} (16 Verbindungen, äusserlich 6 Sorten im Mengenverhältnis 6/16, 3/16, 3/16, 2/16, 1/16, 1/16. Das eingerahmte Feld enthält die gewünschte günstige Sorte; sie ist in beiden Merkmalen homozygot, also konstant und entsteht in 1/16 = 61/40/0 der F_2 -Generation.

B. Mendelsche Erbsenkreuzungen.

G bedeutet gelbe, g grüne, R runde (glatte), r runzlige Samenschale und es dominiert bekanntlich G > g und R > r. Unterstrichen = äusserlich grüne (nicht unterstrichen also = gelbe), mit Wellenlinie unterstrichen = äusserlich runzlige (nicht unterstrichen also = runde) Sorten.

1. Wie fällt F_{1K} aus, wenn gekreuzt wird: a) grün-homozygot rund und homozygot gelb-runzlig?

$$P_K$$
: $ggRR \times GGrr$
 P_G : $gR \longrightarrow Gr$
 F_{1K} : $GgRr$

Also 100 % heterozygot gelb - heterozygot rund (Uniformitätsregel).

b) grün - heterozygot rund mit heterozygot gelb - runzlig?

Lösung:

c) heterozygot gelb - heterozygot rund mit heterozygot gelb - runzlig?

Lösung:

 P_{κ} : GgRr × Ggrr P_a: viererlei zweierlei

$\mathbf{P}_{\mathbf{G}}$	GR	Gr	gR	gr
Gr	GGRr	GGrr ~	GgRr	Ggrr
gr	GgRr	Ggrr ~	<u>gg</u> Rr	ggrr

 \mathbf{F}_{1K}

Aeusserlich verschiedene Sorten also vier, nämlich:

gelbrund 3/8 gelbrunzlig 3/8 grünrund 1/8 grünrunzlig 1/8

Könnte man die Aufgabe vereinfachen, indem man sagt: Die beiden P stimmen im Merkmal Gg überein, also kann man die F1 als Monohybride auffassen und dann einfach ihren Formeln Gg beifügen? Offenbar wäre das falsch; warum?

2. Zur Lösung der beiden folgenden Aufgaben muss von F_{1K} aus, also rückwärts geschlossen werden. Man schreibt also die Lösungen von vornherein von unten nach oben an und man lese sie auch hier in dieser Reihenfolge. Es gibt bei beiden Aufgaben je zwei Lösungen.

Welche Kreuzungen lagen vor, wenn F_1 ein Dihybrid und die F1K

a) Je zur Hälfte heterozygot gelb - heterozygot rund und heterozygot gelb - runzlig?

Erste Lösung: Zweite Lösung: P_{K} : $\underline{\operatorname{ggrr}} \times \operatorname{GGRr}$ P_{G} : $\underline{\operatorname{gr}} \subset \operatorname{GR}$ G P_K : $GGrr \times ggRr$ P_{g} : $Gr \left(\begin{array}{c} gR \\ gr \end{array} \right)$

Da zu je 50 %, so muss der eine P zweierlei, der andere einerlei Geschlechtszellen liefern.

$$F_{1K}$$
: GgRr und Ggrr 50% 50%

b) alle dieselbe Formel besitzen und gelb-rund sind?

Erste Lösung: Zweite Lösung: P_K : GGRR×ggrr P_K : $GGrr \times ggRR$ P_{G} : GR—gr P_g : Gr - gR

Da F, uniform, müssen die P in beiden Merkmals-

paaren homozygot sein.

 $F_{1K} = GgRR$ und GGRr kommen nicht in Betracht, weil in diesen Fällen F, ein Monohybrid wäre, was durch die Aufgabe ausgeschlossen ist.

 F_{1K} : Gg Rr $100 \, {}^{0}/_{0}$ gelb-rund.

C. Vererbung bei Inzucht (Geschwisterkreuzung) von Polyhybriden.

1. Wie gross ist bei 1, 2, 3 ... 10 ... n Merkmalspaaren die Zahl der verschiedenen Geschlechtszellen in jedem Geschlecht der F,-Generation?

2. Wieviele Verbindungen entstehen in F₂?

- 3. Wie gross ist die Anzahl der verschiedenartigen Verbindungen?
- 4. Wie gross ist die Anzahl der äusserlich verschiedenen Sorten der F, unter der Annahme, dass alle Merkmale sich dominant-rezessiv vererben?
- 5. Wie ist das Mengenverhältnis dieser Sorten, d. h. wieviele Verbindungen gehören den verschiedenen

Lösungen in nachfolgender Tabelle:

Zahl der Merkmals- paare	1. Geschlechtszellen von $F_1(F_{1G})$	2. Anzahl der Verbindungen in F _{2K}	3. Anzahl der verschiedenen Verbindungen in F _{2K}	4. Bei Dominanz äusserlich ver- schiedene Sorten der F _{2K}	5. Mengenverhältnis dieser Sorten
1: Aa	A und a: $2 = 2^1$	$ \begin{array}{c c} 2 \times 2 = 4 \\ = (2^1)^2 = 2^2 \end{array} $	$3 = 3^{1}$	$2=2^{1}$	$3+1=(3+1)^1$
2: Aa und Bb	AB, Ab, aB und ab: 4 = 2 ²	$\begin{array}{ c c c c }\hline 4 \times 4 &=& 16 \\ &=& (2^2)^2 &=& 2^{2 \cdot 2} \\ \end{array}$	$\begin{array}{c c} 3 \times 3 = 9 \\ = 3^2 \end{array}$	$4=2^2$	$\begin{vmatrix} (3+1)(3+1) = (3+1)^2 \\ = 9+3+3+1 \end{vmatrix}$
3: Aa, Bb und Cc	ABC, ABc, AbC, aBC abc, abC, aBc, Abc: $8 = 2^3$	$\begin{vmatrix} 8 \times 8 = 64 \\ = (2^3)^2 = 2^{2 \cdot 3} \end{vmatrix}$	38	$8 = 2^3$	$(3+1)(3+1)(3+1) = (3+1)^3 = 27+9+9 + 3+3+3+1$
10	$1024 = 2^{10}$	$1024^2 = 2^{2 \cdot 10}$	3 10	210	$(3+1)^{10}$
n	2 ⁿ	2^{2n}	3 ⁿ	2 ⁿ	$(3+1)^{n}$

Zwei Versuche zur experimentellen Kleine Mitteilungen Bestätigung der R.G.T.-Regel und des Massenwirkungsgesetzes

Von P. Klaesi, Minerva, Zürich.

Wie ich durch jahrelange Erfahrung feststellen konnte, bewirken die beiden nachfolgend erwähnten Versuche bei den Schülern einen nachhaltigen Eindruck und ich bin überzeugt, dass jeder Kollege sofern dies nicht schon geschehen ist - dieselbe Feststellung machen wird.

Der erste Versuch beruht auf der Tatsache, dass Na-thiosulfat sich mit Salzsäure unter Ausscheidung von suspendiertem Schwefel umsetzt:

$$Na_2 S_2 O_3 + 2 HCl = 2 Na Cl + H_2O + SO_2 + S.$$

Dazu dienen als Stammlösungen: 15 g Na₂ S₂ O₃ auf 1000 cm3 H2O und eine n HCl-Lösung. In 4 Bechergläser bringt man je 10 cm3 der Na₂ S₂ O₃-Lösung und je 50 cm3 H, O und erwärmt das erste auf ca. 800, das zweite auf ca. 50°, das dritte auf ca. 30°, das vierte lässt man zu bei Zimmertemperatur. In drei weitern Gläsern fügt man auf je 10 cm³ Na₂ S₂ O₃-Lösung bei Zimmertemperatur statt 50 cm3 nun 100, 120 und 150 cm³ H₂O zu. Hierauf versetzt man alle Lösungen möglichst gleichzeitig mit je 2 cm³ n HCl.

Der zweite Versuch benützt die Oxydation der Oxalsäure durch eine saure K-permanganatlösung, wodurch letztere stufenweise entfärbt wird:

$$\begin{array}{c} 2 \text{ KMn O}_4 + 3 \text{ H}_2 \text{ SO}_4 = \text{K}_2 \text{ SO}_4 + 2 \text{ Mn SO}_4 + \\ &\quad + 3 \text{ H}_2 \text{O} + 5 \text{ O} \\ &\quad 5 \text{ O} + 5 (\text{COOH})_2 = 5 \text{ H}_2 \text{O} + 10 \text{ CO}_2 \\ \hline \\ 2 \text{ K Mn O}_4 + 3 \text{ H}_2 \text{ SO}_4 + 5 (\text{COOH})_2 \\ = \text{K}_2 \text{ SO}_4 + 2 \text{ Mn SO}_4 + 8 \text{ H}_2 \text{O} + 10 \text{ CO}_2 \end{array}$$

Stammlösungen: 10 g K Mn O₄, 400 cm³ konz. H₂ SO₄ und 105 g (COOH)₂ werden in H₂O zu je 1 l gelöst. Dann mischt man in 5 Bechergläsern je 30 cm³ H₂ SO₄-Lösung mit 15 cm³ Oxalsäurelösung und verdünnt die ersten 3 Gläser mit je 150 cm³ H₂O, das vierte mit 250 und das fünfte mit 400 cm3 H2O. Die zwei ersten Gläser erwärmt man auf 80 bzw. 50° und fügt dann zu allen 5 Gläsern wieder möglichst gleichzeitig je 12 cm³ der K Mn O4-Lösung hinzu. Die Entfärbung der Lösungen erfolgt stufenweise langsamer, und zwar je nach Temperatur und Konzentration. Die Anzahl Gläser kann leicht durch weitere Aenderung der Temperatur und Konzentration vermehrt werden.

Ueber Klebstoffe und Kitte, Lacke usw. wurde einmal ausführlich berichtet, aber es ist schon lange her (Erf. X, 1925,

Chatterton-Compoundmasse war früher in siegellackähnlichen Stangen käuflich; jetzt bekomme ich ihn nicht mehr. Er dient zum Befestigen von Glasröhren in Metallfassungen und zum Aufkitten von Glasplatten auf den glattgeschliffenen Rand von Zylindergläsern (Präparatengläsern). Ich stelle ihn jetzt selber her: Gummischlauch wird in einer Blechdose (Pillendose) geschmolzen. Dann Asphalt zugeben, bis Konsistenz während des Schmelzens dickflüssig. Dann etwas Kollophonium und etwas Wachs und unter Umrühren weiter schmelzen, bis eine Versuchsprobe beim Erkalten erstarrt. Ich lasse die Masse grad in der Blechdose erstarren; man nimmt bei Bedarf dann mit warmem Spatel die nötige Menge heraus.

Zum Verschliessen von Präparatengläsern eignet sich auch Picein, das in Chemikalien und namentlich in Alkohol noch weniger löslich ist als die vorhin beschriebene Kittmasse. Ich kenne das genaue Rezept nicht und mein Produkt erstarrt darum beim Erkalten nicht ganz. Aber das ist für unsere Zwecke nur ein Vorteil: der Kitt verschliesst die Gläser ebenso dicht und dauerhaft wie Chattertonkitt, ermöglicht aber ein späteres Wiederöffnen. Die Herstellung erfolgt einfach, indem man zu geschmolzenem Kautschuk (siehe oben) etwa ein Drittel seiner Menge Harz hinzufügt. Auch zum Kitten von Metall auf Glas eignet sich Piceïn.

Harzkitt. Zum Verbinden von Glas oder Metall mit Holz, falls die Kittung nicht sehr dauerhaft zu sein braucht. Gleiche Teile von Kollophonium und Wachs unter Umrühren zusammenschmelzen. Die Masse erstarrt beim Erkalten und ist vor Gebrauch ganz wenig zu erwärmen, damit sie schön knetbar wird.

Klebwachs. Wachs mit 1/3 bis 1/2 seines Gewichtes venetianischem Terpentin zusammenschmelzen. Dient zum Aufkleben von Papier, Karton usw. auf Metall oder Glas und für mannigfache andere Zwecke.

Gute Angaben über Klebstoffe usw. enthält der erste Band des wertvollen Buches von Karl Rosenberg, Experimentierbuch für den Unterricht in der Naturlehre (2 Bde.), Wien 1929 und

Bücherbesprechungen

Naturgeschichte. Lehr- und Arbeitsbuch. Band 1: Pflanzen- und Tierkunde. 318 Seiten in m.8° mit 4 Tafeln und 280 Federzeichnungen im Text. Paul Haupt, Bern 1942. Preis geb. Fr. 4.70.

Ein sehr gelungenes, wertvolles Unterrichtswerk. Es wurde im Auftrage der Erziehungsdirektion des Kantons Bern von der Biologiekommission der bernischen Sekundarschulen und Progymnasien herausgegeben; Verfasser der Pflanzenkunde: Eduard Frey, Bern; der Tierkunde: Max Loosli, Schwarzenburg (Wirbeltiere), Franz Michel, Thun (Wirbellose), Fritz Schuler, Wattenwyl (Allgemeines).

Besonders gut gelungen ist der botanische Teil. Er beginnt mit 16 Einzeldarstellungen. Schon hier zeigt sich das aussergewöhnliche Feingefühl des Verfassers für das, was auf dieser Stufe noch möglich und was für sie von höchstem Bildungswert ist. Man könnte darüber streiten, ob nicht, angesichts ihrer Häufigkeit in einer Frühlingsflora, hier noch die Ranunculaceen vertreten sein sollten, vielleicht auf Kosten der Orchideen, für deren Bestäubungsmechanismus der nachfolgende allgemeine Abschnitt genügen würde. In diesem wird das Keimen, das Blühen und Fruchten und schliesslich die vegetative Vermehrung in lebensvoller Weise dargestellt, wie im ganzen Buche, gestützt auf gut gewählte Beobachtungs- und Experimentieraufgaben, Es folgt der dritte Abschnitt, der die Nutzgewächse und Giftpflanzen kurz, aber gut darstellt, und sodann eine wissenschaftlich und pädagogisch gleich einwandfreie physiologische Anatomie. Als 5. Abschnitt schliessen sich Bestimmungstabellen an, welche die in den Einzeldarstellungen nicht vertretenen Familien besonders berücksichtigen, so dass ohne Pedanterie eine vollständig genügende Uebersicht über das System entsteht. Der Schlussabschnitt ist dem Wald als Lebensgemeinschaft und der Bedeutung des Naturschutzes gewidmet. Ein besonderes Lob verdienen die Abbildungen. Es sind alles Originalzeichnungen. Man erkennt auf den ersten Blick, dass der Zeichner (der Verfasser selbst) Fachmann der Botanik ist. Einzelne Zeichnungen (etwa Seite 83-85), dürften, um die Einzelheiten des Blütenbaues deutlicher erkennen zu lassen, etwas grösser sein.

Auch im zoologischen Teil liefern die Grundlage die (29) Einzeldarstellungen des ersten Abschnittes, die in absteigender Folge angeordnet sind. Der Schulstufe entsprechend sind die Wirbeltiere, insbesondere die Säugetiere, am stärksten vertreten. Der zweite Abschnitt ist eine, da und dort vielleicht etwas zu weitgehende Uebersicht über das System der Tiere, durchsetzt mit guten Angaben über die Lebensweise. Es folgt der m. E. am besten gelungene allgemeine Teil (Abschnitt 3), eine vergleichende Physiologie und Oekologie der Tiere, gegliedert in die Themen: Stütze und Bewegung, Ernährung, Atmung und Kreislauf, gleich- und wechselwarme Tiere, Winterschlaf und Vogelzug, Fortpflanzung und Brutpflege und Sinnesleben der Tiere. Der vierte, abschliessende Abschnitt gibt einige einfache Bestimmungstabellen. Die Abbildungen stehen in Auswahl und Ausführung nicht ganz auf der Höhe derjenigen des botanischen Teils. Aber auch dieser zweite Teil des Buches verrät überall den praktischen Blick des erfahrenen Lehrers und dürfte sich

im Unterricht ebenso bewähren wie der erste.

Der zweite Band des vorliegenden Lehr- und Arbeitsbuches (Menschenkunde) ist bereits im vorigen Jahr erschienen und wurde in Erfahrungen XXVIII (1943), Nr. 2, besprochen.

In der Schweiz. Lehrerzeitung Nr. 22 vom 28. Mai dieses Jahres erschien eine ausführliche Besprechung des gesamten bernischen Biologielehrmittels, verfasst von A. Steiner. Dort wird namentlich auf die pädagogischen Absichten, welche die Verfasser dieses Unterrichtswerkes leiteten, näher eingegangen, so dass jene Besprechung dem Lehrer zugleich eine Anleitung zum richtigen Gebrauch der Bücher in die Hand gibt. G.

Schilling Viktor: Praktische Blutlehre. Für Aerzte, Studenten und Laboranten. 10. und 11. Avfl. XII und 120 S. in kl. 8° (Taschenformat) mit 42 Textbildern, 2 Kurvenblättern und 1 farbigen Tafel. G. Fischer, Jena 1942. Vom Preise von RM.

4.- kommt ein Auslandsrabatt in Abzug.

Blutbilder gesunder und kranker Menschen können für den biologischen Unterricht sehr wertvoll sein. Aber man muss sie einigermassen deuten können. Darum sei die erweiterte Neuauflage der weitverbreiteten hämatologischen Fibel des Direktors der medizinischen Universitätsklinik in Rostock hier kurz besprochen. Sie ist nicht nur für vollmedizinisch ausgebildete Benützer bestimmt, sondern sie will auch dem Selbststudium dienen und bedient sich demgemäss einfacher Ausdrucksformen. Das Büchlein enthält Anleitungen zur Blutuntersuchung in technischer und in diagnostischer Richtung. Es kann uns darum auf zwei Arten dienen. Einmal durch seine Beschreibungen der selbst herstellbaren bzw. verhältnismässig billigen Gerätschaften und die sehr genauen Anleitungen zur Herstellung der Ausstriche und «dicken Tropfen». Dann eben zur Einführung in die Deutung der Blutbilder. Man kann sich ja von einem Spitalarzt oder Laboranten leicht fertige Blutpräparate bekannter Krankheiten verschaffen, um diese mit den Beschreibungen und Zeichnungen des Buches zu vergleichen und so den Blick für den Sinn des Blutbildes zu schärfen. Der umgekehrte Weg der eigentlichen praktischen Diagnose werden wir ja in der Regel nicht mehr betreten. Aber schon in dieser Beschränkung kann das Büchlein, um die Feinheit und Zuverlässigkeit moderner biologischer Methoden darzutun, gute Dienste leisten.

H. Werner: Vom Polarstern bis zum Kreuz das Südens. Eine allgemeinverständliche Einführung in die Astronomie der Himmelskugel und Anleitung zur Orientierung im Gelände nach Gestirnen auf der ganzen Erde. VIII und 196 Seiten in Taschenformat. Verlag: G. Fischer, Jena 1943. Kart. RM. 8.— (wovon ein Auslandsrabatt in Abzug kommt).

In Erf. XXVI (1941), Nr. 4, wurde das sehr brauchbare Büchlein «Orientierung im Gelände nach Gestirnen» besprochen. Dieses gilt nur für mittlere Breiten der nördlichen Halbkugel und ist eine Art Vorläufer der hier nun vorliegenden grösseren Schrift H. Werners, die dem Leser alle Grundlagen liefert, die zur astronomischen Orientierung an jedem beliebigen Erdorte erforderlich sind. Der Verfasser benützt zur Lösung dieser Aufgabe die reichen Erfahrungen, die er als Leiter des Zeiss-Planetariums gesammelt hat und behandelt dabei viele Fragen (Dämmerungsdauer, Einheitszeiten usw.), die in den meisten himmelkundlichen Anleitungen übergangen werden. Viele einprägsame bildliche und tabellarische Darstellungen tragen zur Erreichung des Zieles wirksam bei. Dem wertvollen Buch ist ein grosser Leserkreis zu wünschen.

Aristoteles: Biologische Schriften. Griechisch und deutsch herausgegeben von Heinrich Balss. 301 Seiten in Taschenformat. Verlag: Ernst Heimeran, München.

«Ich hatte einen hohen Begriff von Aristoteles' Verdiensten, ich hatte aber keine Idee davon, was für ein wunderbarer Mensch er gewesen ist» (Charles Darwin). Die hier gegebene Auswahl aus den biologischen Schriften des «Vaters der Zoologie» sucht ein Bild seiner Forscherarbeit auch denen zu geben, für die das Studium der umfangreichen und, auch in der Uebersetzung, nicht leicht zu verstehenden Originalarbeiten zu schwierig wäre. Der Text ist in folgende Kapitel gegliedert: Einleitung zur Naturgeschichte, systematische Einteilung der Tiere, Bau und Leistung der Organe, Lebensweise der Tiere, über Seele und Leben, Zeugung und Entwicklung, der Staat als Organismus. Es folgt ein wertvolles Nachwort über des Meisters Leben und seine biologischen Werke (S. 256—278), ein sorgfältig bearbeiteter Anhang mit Erläuterungen zu einzelnen Textstellen (S. 279—292) und ein Register. Die Ausstattung des Bändchens ist sehr ansprechend.

A. Ehrenhaus: Das Mikroskop. Seine wissenschaftliche Grundlage und seine Anwendung. 3. Aufl. VI und 156 Seiten in Kleinoktav. Mit 83 Abbildungen im Text. Verlag: G. B. Teubner, Leipzig und Berlin 1943. Kart. RM. 3.50.

Da die vorliegende dritte Auflage ein unveränderter Abdruck der zweiten ist, die in Erf. XXIV (1939), Nr. 6, besprochen wurde, so braucht hier nur auf jene Besprechung verwiesen zu werden. Das Büchlein hat sich inzwischen als knappe, aber doch sehr reichhaltige und übersichtliche Darstellung im praktischen Gebrauch weiter bewährt.

B. Plüss: Unsere Bäume und Sträucher. Anleitung zum Bestimmen unserer Bäume und Sträucher nach ihrem Laube, nebst Blüten- und Knospentabellen. 12. Aufl. 140 Seiten in Kleinoktav. Verlag: Paul Haupt, Bern 1943. Kart. Fr. 4.—.

Für alle Biologielehrer eine freudige Nachricht: wir werden unseren Schülern die seit langem vergriffenen botanischen Führer von Plüss wieder in die Hände geben können. Diese Bändchen sind ja von keinen späteren Erscheinungen dieser Art, auch wenn dieselben prunkvoller ausgestattet waren, erreicht worden. Der Text verrät auf jeder Zeile Sachkunde und pädagogisches Verständnis und die trefflichen Sammelbildchen, deren Zahl allmählich bis auf 150 anstieg, sind durch ihre Naturtreue berühmt geworden. Echteste Schweizererzeugnisse sind diese Büchlein: anspruchslos, aber gehaltvoll und praktisch sehr brauchbar.

Nachdem der deutsche Verlag sich nicht mehr zur Herausgabe weiterer Auflagen entschliessen konnte, hat ein schweizerischer Verleger die Weiterführung der Plüßschen Führer übernommen. Vorerst liegt das wohlbekannte älteste, «Unsere Bäune und Sträucher», vor; die weiteren sollen offenbar in nächster Zeit folgen und werden hier seweilen angezeit werden. Das vorliegende Bändchen ist inhaltlich kaum verändert worden, in der Ausstattung dagegen ziemlich erheblich durch Verwendung von Antiquadruck, zweckmässigere Anordnung der Bilder und einen ansprechenden und handlichen (Preßspan-) Einband. Wir wünschen den Plüßschen Büchern, die sich ja auch als Fahrtenbegleiter für Liebhaberbotaniker und als Geschenkwerklein trefflich eignen, neue volle Erfolge.