Zeitschrift:	Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band:	2 (1922)
Heft:	3-4
Artikel:	Zur Klassifikation der Charnockit-Anorthositprovinzen
Autor:	Suter, Hans H.
DOI:	https://doi.org/10.5169/seals-4377

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 26.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Klassifikation der Charnockit-Anorthositprovinzen.

Mit 15 Textfiguren.

Von Hans H. Suter, Zürich.

Es sind schon viele Jahre verflossen, seit der Entwicklungsgedanke Gemeingut aller Wissenschaften geworden. Als eine logische Folge zeigte sich namentlich in den beschreibenden Naturwissenschaften das Bestreben, über die alten Klassifikationssysteme hinaus zu einer Systematik zu gelangen, die nicht nur den Bestand der betreffenden Disziplin klar erfassen läßt, sondern auch eine natürliche genannt werden darf. Zu einer solchen konnte man aber erst gelangen auf Grund von Studien über die Verwandtschaft der Objekte. Diese Studien sind in der Petrographie heute noch im Gange, aber doch schon so weit gediehen, daß sie mehrere Versuche solcher natürlicher Systeme gezeitigt haben.

Die Systematik der Eruptivgesteine stützt sich auf die chemischen und mineralogischen Eigenschaften derselben. Neben analytischen und experimentellen Untersuchungsmethoden stehen auch solche zur Verfügung, die uns gestatten, rechnerisch und graphisch die Gesteine zu vergleichen. Eine Methode, die das in sehr klarer Weise ermöglicht, ist die, welche P. Niggli in seinem Lehrbuch der Mineralogie (lit. 1) angibt.

Die kleinste Einheit der Gesteine (wenn wir vom Handstück, dem Einzelgestein, absehen), mit welcher der Petrograph im Felde zu rechnen hat, ist die Gesteinsserie. Eine Serie umfaßt nur Gesteine derselben geologischen Einheit; solche Gesteine sind meistens durch Uebergänge kontinuierlich verbunden, zeigen aber auch sonst gemeinsame Merkmale, sei es im Mineralbestand oder in der Mineralausbildung. Die Verwandtschaft läßt sich auf gleiche oder ähnliche Entstehung während des gleichen geologischen Aktes zurückführen. Die Serie umfaßt also eine reelle Reihe von genetisch verwandten Gesteinen.

Im Verlauf der petrographischen Durchforschung eines Gebietes gelingt es oft, mehrere Serien von ähnlicher Ausbildung zu finden, die alle den geologischen Befunden nach zu einer regionalen Einheit, der petrographischen Provinz, zusammengefaßt werden können. Damit ist gewöhnlich die Feldarbeit abgeschlossen. Ein vergleichendes Studium der petrographischen Provinzen ergibt jedoch, daß noch zwei höhere Einheiten existieren, respektive sich konstruieren lassen.

Sehr nahe verwandte, regional jedoch verschiedene petrographische Provinzen lassen sich durch Idealisierung zu einem Typus einer petrographischen Provinz, zu einer Familie von Provinzen vereinigen. Eine weitere Idealisierung bei der Zusammenfassung mehrerer Familien führt uns dann endlich zur höchsten Einheit, zur Sippe, so daß wir folgende Systematik hätten:

Serie \implies Provinz \implies Familie (v. Provinzen) \implies Sippe

Die Tabelle 1 will einen kurzen Ueberblick über die hauptsächlichsten Eigenschaften dieser vier Glieder geben. Es ist aus ihr leicht zu ersehen, daß zum Beispiel der Begriff Familie ziemlich übereinstimmt mit dem Begriff des Stammestypus von V. M. Goldschmidt (lit.5). Wir verwenden die Bezeichnung Familie, trotzdem sie in der speziellen Gesteinskunde im Gebrauch steht. Eine Verwechslung ist aber nicht möglich, weil hier Familie immer im Zusammenhang mit Provinz gebraucht werden soll. Mit dem Worte "Stamm" die Familie zu bezeichnen, scheint nicht ratsam, weil man dann gerne von vorneherein an verschiedene Stämme denkt und die Möglichkeit außer Acht läßt, daß die Bildung des einen oder andern Provinzialtypus lediglich durch verschiedenen Ablauf des Geschehens, nicht durch Verschiedenartigkeit des Materials, bedingt sein kann.

Mit Hilfe der Berechnungsmethode Nigglis lassen sich diese Einheiten scharf auseinanderhalten. Sie ermöglicht sofort einen Ueberblick über die Verwandtschaft einer Provinz mit irgend einer Familie; sie gestattet uns, zu entscheiden, welcher Sippe eine Familie zuzurechnen ist oder ob eventuell die Aufstellung einer neuen Sippe sich rechtfertigt.

Die sogenannte "Charnockitserie" ist nun seit Jahren immer wieder Gegenstand interessanter Erörterungen

	Serie	Provinz	Familie	Sippe	
Gesteine	zeigen viele gemein- same Merkmale	einzelne Merkmale treten in der ganzen Provinz auf	einzelne – gleiche – Pro- vinzial-Merkmale finden sich in allen einer Familie zugehörigen Provinzen	sind Idealtypen	
Differentiations- Reihe	\pm unvollständig	\pm vollständig	vorwiegend vollständig	vollständig	
Tektonisches Milieu	ist geologisch einheitlich	meist in geologischem Sinne einheitlich	meist in allen zugehörigen Provinzen gleich	ist ein nur allgemein gesetzmäßig bestimmtes	
Geologisches Alter	ganz bestimmt	ist insofern fixiert, als eine Provinz einer geol. Zeit entstammt	zugehörige Provinzen können verschieden- altrig sein	beliebig	
		haben provinzialon	Idealmagmen, erhalten durch:		
Magmen	sind reelle Typen	Charakter	Vergleich zusammen- gehöriger Provinzen	Vergleich der Magmen aller verw. Familien	
Vorkommen und	beschränkt auf eine lokale geolog. Einheit	umfaßt eine regional begrenzte geol. Einheit	nur von den geol. Verhältnissen abhängig; umfaßt den Idealtyp		
Bestand	blutsverwand	lter Gesteine	verwandter Provinzen	verwandter Familien	

Tabelle 1. Die natürlichen Verwandtschaften der petrographischen Einheiten.

309

klassifikatorischer Natur gewesen. Im Jahre 1908 hat H. Rosenbusch sich mit ihr beschäftigt; später hat H. S. Washington (lit.7) sich über sie ausgesprochen, und neuerdings machte sie V. M. Goldschmidt (lit.5) zum Gegenstand grundlegender vergleichender Untersuchungen, nachdem er schon früher bei der Bearbeitung norwegischer Gesteine auf sie gestoßen war. Eine Uebereinstimmung in der Beurteilung ihrer Stellung in der Systematik der Eruptivgesteine ist aber noch nicht erzielt; es dürfte deshalb ihre Diskussion an Hand der Methode Nigglis von einigem Interesse sein.

Der Typus der Charnockit-Anorthositprovinzen.

Eine petrographische Einheit ist offenbar bestimmt, wenn ihre Eigenschaften erklärend herausgearbeitet sind. Zur Charakterisierung einer solchen Einheit in dem Umfange, wie wir sie hier vornehmen können, genügt wohl eine Diskussion der Eigenschaften, welche wir in Tabelle 1 angedeutet haben.

Von den übereinstimmend zu den Charnockit-Anorthositprovinzen gezählten Gesteinsvorkommnissen benützen wir hauptsächlich folgende als typisch:

- 1. Die Charnockitprovinz von Vorderindien (lit. 7).
- 2. Die Hypersthensyenit-Anorthositprovinz der Adirondacks U. S. A. (lit. 10 und lit. 12).
- 3. Die Mangerit-Anorthositprovinzen Norwegens (lit. 6 und 9).
- 4. Die Charnockitprovinz der Elfenbeinküste (lit. 8).

Die Serien sämtlicher Provinzen enthalten saure, intermediäre und basische Glieder. Die Differentiationsreihe der vorderindischen Provinz zeigt z.B. folgendes Bild: Charnockit (Hypersthengranit) — Hypersthendiorit—Norit—Hbl. - Hypersthenit. Diejenige der Jotunprovinzen etwas vereinfacht folgende Reihe:

Hypersthengranit und {Hbl. Aegirin Diopsid}Granite-Hypersthensyenite-Labradorfelse

		Labrauorieise
Mangerite – Jotun	Norit – Norit 🧹	Peridodite
	*	Pyroxenite

In den Adirondacks haben wir eine ähnliche vollständige Reihe. Sie reicht von den Augitsyeniten über die Norite zu Anorthositen. Die Elfenbeinküste und Ellesmere-Land enthalten wahrscheinlich eine ebenso vollständige Serie; bekannt ist sie vorläufig nur von den Hypersthengraniten zu den Noriten. Von der eigentlichen Charnockitprovinz weiß man, daß sie auch Anorthosite beherbergt, die aber noch nicht untersucht sind. Wir können daher vorläufig ihre Differentiationsreihe noch nicht endgültig begrenzen, was, wie wir sehen werden, für unsere Untersuchung nicht unbedingt notwendig erscheint. Wir hätten, wie aus obiger Zusammenstellung zu ersehen ist, zwei Reihen auszusondern, nämlich erstens eine von den Hypersthengraniten zu den Noriten und zweitens eine von diesen zu den Labradorfelsen und Pyroxeniten.

Betrachten wir die Gesteine dieser Reihen in Bezug auf Ausbildung und Mineralbestand.

Uebereinstimmend sprechen die meisten Autoren von graublauen bis grünlichen, oft feinkörnigen Gesteinen. Der Feldspat ist vielfach mikroperthitisch ausgebildet. Dieser Mikroperthit tritt schon in relativ intermediären Gliedern aller Provinzen auf. Daneben findet sich aber immer eine oft recht beträchtliche Menge von Plagioklas, dessen Zusammensetzung von Oligoklas, Oligoklasalbit in den granitischen Gliedern bis zu Labrador in den basischen wechselt. Die Labradore des Bergengebietes zeigen eine Zusammensetzung von 60 % An. und 40 % Ab. Die Albitverzwillingung der Plagioklase ist durchschnittlich in sehr geringem Maße vorhanden; an der Elfenbeinküste ist sie äußerst fein und oft vom Periklingesetz begleitet. In Indien tritt sie ganz zurück.

Die femischen Minerale sind ganz besonders typisch für die Charnockitprovinzen. Da ist in erster Linie der Hypersthen zu erwähnen, der alle Glieder durchläuft und selbst in den Graniten, wenn auch in kleinen Beträgen, zu finden ist. Der Biotit, sonst ein den Graniten nie fehlendes Mineral, tritt hier völlig zugunsten des Hypersthens zurück. In Indien und an der Elfenbeinküste fehlt er sozusagen ganz, er ist im Bergen-Gebiet untergeordnet vorhanden und scheint auch in den Adirondacks, doch auch dort nur in geringem Maße aufzutreten. Diese zwei Feststellungen müssen wir festhalten für die unten folgende Betrachtung des Chemismus.

Hypersthen ist vielfach von monoklinen Pyroxenen, seltener von Hornblende begleitet, kann in wenigen granitischen Gliedern (Norwegen) sogar durch Aegirin oder Arfvedsonit ersetzt werden. Die Hypersthene Indiens weisen meist eine Spaltbarkeit nach (010) auf, ihr Pleochroismus weicht vom gewöhnlichen kaum ab.

Die konstant auftretenden Akzessorien sind Apatit, Titanit und Magnetit. In basischen Gliedern ist oft Ilmenit stark angereichert.

Olivin tritt in den Bergen-Jotunstamm ein und führt direkt zu peridotitischen Gliedern.

Alle diese Gesteine stammen aus archäischer Zeit. Sie durchbrechen in den Adirondacks in Gängen und Stöcken laurentische Gneise; in Afrika sind sie in archäische Granite und Orthogneise hineingedrungen. Ueber das geologische Alter, die tektonische Lagerung und über die Eruptionsfolge der norwegischen Gesteine sind wir durch die gründlichen Untersuchungen von F. Kolderup (lit. 9) und V. M. Goldschmidt (lit. 6) etwas näher orientiert. Es lassen sich folgende Generationen von Eruptivgesteinen nachweisen (lit. 6, p. 54), von denen I die älteste ist:

I. Generation: Pyroxenite, Peridotite, normale Gabbros, Norite.

II. Generation: Jotunnorit, Mangerit, Labradorfels.

III. Generation: Pyroxensyenite, Monzonite, alle Granite.

Diese Gesteine liegen jetzt in Deckfalten über Sedimenten des Kambriums und des Untersilurs. Die Deckfalten sind an der Unterseite mylonitisiert; tektonische Beanspruchung der Gesteine wurde übrigens auch in den andern Provinzen nachgewiesen, so zeigt der Quarz in vielen Fällen kataklastische Erscheinungen. Die Wurzeln dieser Decken liegen im südnorwegischen Faltungsgraben und füllen ihn eine Strecke weit. Im besondern läßt sich über das Alter sagen, daß die Gesteine nicht jünger sein können als die kaledonische Faltung; sie dürften zum Teil noch dem frühesten Stadium der Gebirgsbildung angehören, wären also frühkaledonisch. Mit dieser Altersfeststellung stimmt auch gut überein, daß die ältesten Glieder basisch sind. Basische Magmen werden (siehe z. B. P. Niggli, lit. 2) immer vor oder kurz vor Beginn einer Faltungsperiode gefördert; im Verlaufe der Faltung werden die Magmen saurer. Auch aus der Adirondackprovinz berichtet H.P. Cushing (lit. 10), daß die Labradorfelse und die Norite älter als die Augitsvenite seien.

Das tektonische Milieu scheint demnach das Faltengebirge zu sein, was, wie wir sehen werden, wesentlichen, ja, wie V. M. Goldschmidt annimmt, entscheidenden Einfluß auf die Gestaltung der Familie hatte.

Wir haben mineralogische und geologische Verwandtschaften konstatiert; wir wollen nun daran gehen, die wichtigsten Verwandtschaftsbeziehungen, die chemischen, zu betrachten. Wir stellen dabei den Chemismus der Gesteinsreihe, wie er sich in den Differentiationsdiagrammen offenbart, in den Vordergrund, nicht den des einzelnen Gesteins.

Die Anorthosite, zum Teil auch die Pyroxenite, haben wir, soweit das notwendig und möglich ist, zu besonderen Reihen zusammengestellt.

Ein Diagramm ist offenbar charakterisiert, wenn wir einige besonders ausgezeichnete Punkte, die Richtung des Kurvenverlaufes, sowie die Beträge der Differenzen der einzelnen Kurven kennen.

Die Betrachtung des Diagrammes der vorderindischen Charnockitprovinz (Fig. 1) in Verbindung mit der Tabelle 2 und dem **k-mg**-Diagramm (Fig. 7) ergibt folgendes Bild:

Die Kurve für alk verläuft im allgemeinen ziemlich flach zwischen si 150 und si 250, so daß die Isofalie unscharf wird. Die Isofalie selbst liegt um si 250 (Kalkalkalisippe 180–250), wobei dann c > bis = alk wird und fm = alk = 30. Auffallend ist das bei hohem si große fm; wir werden es in den andern Provinzen nicht mehr so hoch finden. mg ist, wie sich aus dem k-mg-Diagramm (Fig. 7) ergibt, meist nicht sehr hoch, etwas niedriger als in den ähnlichen Hauptmagmentypen der Kalkalkalisippe.

Die Differenz zwischen den **al-** und **alk**-Kurven ist relativ konstant, nicht sehr hoch. Sie nimmt etwas zu im Gebiete der Isofalie. Im ganzen muß die Differentiation als pazifisch bezeichnet werden, mit Anklängen an die der Alkalisippen. Na dominiert ganz deutlich in der ganzen Provinz.

Das Diagramm der Elfenbeinküste (Fig. 2), genau im selben Maßstab konstruiert und so gezeichnet, daß die Anfangspunkte des Koordinatensystems untereinander liegen, ergibt einen überraschend ähnlichen Kurvenverlauf. Nur hat jetzt eine leichte Verschiebung der Isofalie nach niedrigerem si (190) hin stattgefunden. Das fm der sauren Glieder ist etwas niedriger. Die Kurve für alk zeigt im Gebiete der Isofalie die charakteristische Vergrößerung der Differenz, wie sie auch das allgemeine Diagramm (Fig. 15) aufweist. Im Ge-

Schweiz, miner. u. petr. Mittlgn.

biete der Isofalie ist c > alk. Die Differentiation muß als josemititisch-gabbroid bezeichnet werden. Na Vormacht bleibt bestehen (Fig. 8).

Obwohl uns bei der Konstruktion des Bergen-Jotun-Diagrammes (Fig. 3) mehr Analysen zur Verfügung gestanden sind, zeigt dasselbe weitgehende Parallelität mit den andern. Die Isofalie, dieser Brennpunkt der Diagramme, fällt

Mg

Fe

Mg.

Fe

Mg

Ŧe

K

K

K

K

h

CHARNOCKIT-PROVINZEN.

KALKALKALISIPPE.

wieder auf ein si von rund 190, wobei c wenig kleiner als alk ist. Die Differenz al-alk ist immer noch relativ gering, wiederum steigt die alk-Kurve im Gebiete der Isofalie rascher an, um dann etwas flacher das Gebiet der hohen si-Zahlen zu durchlaufen. c, das in obigen Fällen immer kleiner als fm war, verringert nun die Differenz in den sauren Gliedern, welche Tendenz auch für Figur 15 sehr bezeichnend ist. fm = al = 30.

Das Diagramm der Adirondackprovinz (Fig. 4) macht von den übrigen keine Ausnahme; es schmiegt sich sogar gut demjenigen von Bergen-Jotun an. Entsprechend den auftretenden Gesteinen reicht es nur bis etwa si 300. Die k-mg-Diagramme (Fig. 7—10) der einzelnen Provinzen zeigen alle das von der pazifischen Sippe her bekannte Ansteigen nach links.

Die Provinzen liegen alle völlig im Felde der Na-Vormacht und gehen nur um ein Geringes über mg = 0.5 hinaus.

Von der normalen Differentiationsreihe der Bergen-Jotun-Gesteine zweigt sich die 1 a b r a d o r f e l s i t i s c h - p y r o x en i t i s c h e ab, d e r e n D i a g r a m m Figur 5 zeigt. Wir wollen es zugleich mit demjenigen der analogen Zweigreihe in den Adirondacks (Fig. 6) betrachten.

Die Verwandtschaft ist in die Augen springend. Ganz charakteristisch fällt die **fm**-Kurve rapid nach rechts, hat um **si** 150 in Bergen-Jotun und bei **si** 160 in den Adirondacks ein Minimum und steigt dann mehr oder weniger rasch an zu den normalen **fm**-Werten der gabbroiden-noritischen Magmen. Die Isofalie liegt in beiden Diagrammen recht scharf um **si** 125, wobei $c \ge alk$. Die hohe Lage der c-Kurve ist das zweite Charakteristikum an diesen Diagrammen. Um zu den normalen basischen Gesteinen zu kommen, muß dann c, im Gegensatz zu **fm**, etwas fallen. Die Differenz **al-alk** ist sehr groß und recht konstant. Beide Diagramme zeigen labradorfelsitische-pyroxenitische Magmen.

Schon im Mineralbestand vorhandene Uebereinstimmungen haben sich auch, mit regionalen Abweichungen, im C h e m i s m u s finden lassen, so daß es uns erlaubt scheint, bei der Erklärung des vorhandenen Mineralbestandes gemeinsam vorzugehen.

Normal granodioritische Gesteine zeigen nach Analysen aus H. Rosenbuschs Elementen (lit. 11) Wassergehalte von minimal 0,7 Gew. %; Syenite, speziell Glimmersyenite solchen von 1,5 %; Gabbroide Gesteine 1,3 %. Vergleichen wir damit

die Wasserführung unserer Gesteine. Wir finden in den Gesteinen der Elfenbeinküste einen konstanten H2O-Gehalt von maximal 0,6 Gew. %. In den Gesteinen der indischen Provinz zeigen die Granite im Maximum 0,2 %, die Quarzhypersthen-Diorite 0,11 %, die Norite 0,19 % und die Pyroxenite endlich 0,08 %. Der norwegische Jotunnorit hat einen H2O-Gehalt von 0,28 %, der Hypersthen-Syenit einen solchen von 0,37 %, ein Mangerit allerdings 1,39 %. Die Augitsyenite der Adirondacks führen 0,5 % im Maximum, die basischen bloß 0,3 % im Durchschnitt. Die Anorthosite von Norwegen und aus den Adirondacks zeigen einen relativ höhern H2O-Gehalt. Die Gesteine der Charnockitprovinzen haben, wie man sieht, ein ganz bedeutendes Manko an H2O gegenüber andern pazifischen Gesteinen. Ob es sich um primäre Unterschiede, Verdampfungserscheinungen oder, wie V.M.Goldschmidt glaubt, um Intrusion in wasserarme Nebengesteine handelt, bleibe dahingestellt. Nun verstehen wir, warum nicht Biotit [SiO4]3 Als KII2. [SiO4]3 (MgFe)6, sondern H y p e r s t h e n $[SiO_4 . SiO_2]$ (FeMg)₂ auftritt. Der H₂O-Mangel und das etwas zurücktretende Mg erzwingen seine Bildung,¹ wobei der hohe Fe-Gehalt noch mithilft. Die Biotite liegen übrigens in der rechten obern Ecke des **k-mg**-Diagrammes, fallen also völlig aus unserm Feld heraus, in welchen nun eben gerade die Augite liegen (lit. 3). Das unverbrauchte, nicht sehr hohe Kali, tritt ins Feldspatmolekül ein, und zwar schon in relativ wenig sauren Gesteinen, wovon uns das frühe Auftreten des Mikroperthites (in Mangeriten z. B.) Kunde gibt. Daß nun auch granitische Magmen Hypersthen zeigen und nicht oder nur wenig Biotit, trotz der oft fast normalen H₂O-Führung, hat seinen Grund wohl in dem Ablauf der Differentiation und den besonders durch die vorgängige Differentiation geschaffenen Gleichgewichtszuständen.

Das überall in den basischen Gliedern relativ hohe c bedingt die großen Mengen von Plagioklas. H. S. W a s h i n g t o n gibt zum Beispiel (lit. 7, p. 329) für Norite 40,8 % Feldspat an. Sehr hoch ist c natürlich in den Labradorfelsen, wo es Beträge bis 37 erreicht.

Wie man sich leicht überzeugen kann, müssen sich die einzelnen Glieder des Diagrammes einer Provinz mit entsprechenden Gliedern der Diagramme anderer verwandter Provinzen vertauschen lassen; oft wird, um volle Uebereinstimmung zu erzielen, eine geringe Verschiebung auf der Abscisse nötig sein; das hat seinen Grund darin, daß wahrscheinlich die betreffenden Magmen mit einem etwas andern Kieselsäuregehalt in die zur Differentiation notwendigen geologischen Verhältnisse kamen.

Nimmt man nun solche Vertauschungen vor, respektive vereinigt man das gesamte Material auf ein Diagramm, so erhalten wir statt der einzelnen Kurven Bänder, deren Mittelwerte uns ein I d e a l d i a g r a m m der betreffenden vereinigten Provinzen (das Diagramm der Familie) ergeben. In Fig. 13 und 14, ebenso für die **k-mg**-Diagramme in Fig. 11, ist das geschehen, und nun zeigen sich folgende Verhältnisse: Die **c**- und **im**-Kurven nähern sich bald nach der Isofalie und sinken fast gemeinsam zu kleinen Beträgen für hohes **si**. Die Differenz **al-alk** ist maximal im Gebiete der Isofalie, nimmt dann ein wenig ab. Sie bleibt bei höhern **si**-Werten ziemlich konstant

¹ Siehe z. B. "Die Hypersthenandesite Kroatiens" in der in diesem Hefte befindlichen Arbeit von P. Niggli.

und ist nicht sehr groß. Die Isofalie liegt um si = 175; dabei ist c > bis = alk = 18; al = fm = 32.

Mittels des Idealdiagrammes lassen sich nun die Beziehungen zu andern Idealdiagrammen verfolgen. Zur Charakteristik des Gesteinsbestandes, wie er sich in Gesteinsname und Mineralbestand ausdrückt, können wir überdies noch an die Darstellung erinnern, die V. M. Goldschmidt (lit. 5, Fig. 4, p. 11) angibt. Das Schema der Entstehung der Gesteine der Mangeritstämme kann uns mit geringen Veränderungen als Schema der Familie der Charnockit-Anorthositprovinzen dienen. Von diesen Gesteinen nehmen in den Adirondacks und in Norwegen die Labradorfelsite neben den Noriten die größten Räume ein.

Die Klassifikation.

Im Jahre 1900 erschien die Arbeit von Th. H. Holland über die bekannten Charnockite Indiens, der ganz richtig von einer Charnockitserie, als von durch Uebergänge verbundenen Gesteinen einer Lokalität, sprach. In der Folge erkannte man ihre Verwandtschaft mit norwegischen und amerikanischen Gesteinen, und H. Rosenbusch stellte 1908 die Hypothese auf, daß möglicherweise eine neue, selbständige, nach unserm Schema als Sippe zu bezeichnende petrographische Einheit vorliege. 1910 spricht er ihr selbständige Stellung neben den Kalkalkaligraniten und Alkaligraniten zu (lit. 11, p. 86). F. v. Wolff zählte sie in seinem Vulkanismus, Band I, pag. 153, zu seiner arktischen Sippe, die lediglich aus Basalten besteht und deshalb aus geologischen und petrographischen Gründen außer Betracht fällt. H. S. Washington (lit. 7) fixiert ihre Stellung nicht endgültig, spricht ihr aber eine große Selbständigkeit zu. V. M. Goldschmidt (lit. 5) führt unter seinen Stammestypen der Eruptivgesteine die der Mangeritstämme auf; sie sind z.B. den Glimmerdioritstämmen gleichwertig.

Fragen wir uns nun zunächst, wie weit ihre Selbständigkeit geht. In unserm Schema sicher bis zur Familie; denn wir haben verwandte Provinzen verglichen und gesehen, daß sie sich zwanglos zu einem Idealtypus vereinigen lassen. Der engen Verwandtschaft der Differentiationsdiagramme entspricht eine enge mineralogische Verwandtschaft.

Eine weitere Selbständigkeit kommt indessen der Familie nicht zu; denn ein Vergleich mit den Verhältnissen der zur

0++

9<u>9</u>

260 280

12.0

₽

pazifischen Sippe vereinigten Familien von Provinzen zeigt, daß genügend viele Aehnlichkeiten vorhanden sind, um den Anschluß an diese zu erlauben und um darzutun, daß eine Abtrennung zu einer selbständigen Sippe nicht gerechtfertigt ist. Die Unterschiede zwischen den idealen Differentiationsdiagrammen der drei Sippen (pazifisch, atlantisch, mediterran) sind viel größer und von viel einschneidender Art.

Halten wir das allgemeine Diagramm der pazifischen Sippe (Fig. 15)¹ neben unser Idealdiagramm, so fallen uns sofort die Aehnlichkeiten in der Lage der Isofalie, dem Kurvenverlauf von **fm** und **c**, den Differenzen **al-alk** auf. Leichte Anklänge an die Diagramme der Alkalisippen sind zwar vorhanden; so hat das Diagramm mit dem der mediterranen Sippe die relative Konstanz der **al-kal**-Differenz gemeinsam, die Differenz selbst ist aber bedeutend kleiner als im mediterranen Diagramm. Diese Abweichungen genügen aber sichtlich noch nicht zur Abtrennung von der pazifischen Sippe und zur Selbständigmachung oder Vereinigung mit der mediterranen Sippe.

Zwei weitere Vergleiche sollen die Stellung noch deutlicher dartun.

Fig. 10 (S. 211) der in diesem Hefte erscheinenden Arbeit von P. Niggli (lit. 4) stellt das Idealdiagramm der unbestritten pazifischen, inneralpidischen Provinzen dar, Fig. 21 (S. 211) dasjenige der mediterranen romanischen Provinzen. Auf S. 209 und S. 228 finden sich die Werte zusammengestellt, die man erhält, wenn man das Idealdiagramm für bestimmte **si**-Werte ausmißt. Das haben wir auch für unser Diagramm getan und setzen nun die drei Tabellen untereinander.

Charnockitprovinzen, pazifisch.

si	al	fm	c	alk	Summe	al-alk
400	43	10	12	35	100	8
300	42	11	14	33	100	9
250	40	16	16	29	101	11
200	36	25	22	18	101	18
172	32	32	18	18	100	14
150	27	39	18	15	99	12
120	21	52	17	10	100	11
100	14	65	15	6	100	8

¹ Gezeichnet nach der entsprechenden Figur in P. Niggli "Lehrbuch der Mineralogie.

si	al	fm	с	alk	Summe	al-alk				
400	46	11,5	10	33,5	101	12,5				
300	41	18,5	14,5	27	101	14				
250	38	22,5	17,5	23	101	15				
200	34	30	19,5	16,5	100	17,5				
185	32	32	21	15	100	17				
150	28	39	23	11	101	17				
120	21	45	26	7	99	14				
		Roman	1isch, medi	iterran.						
200	43	13	8,5	36	100,5	7				
150	33	23	18,5	26	100,5	7				

130

120

100

28

25

17,5

28

31

40

inneralpidisch, pazifisch.

Zur inneralpidischen Provinz zeigen sich folgende Beziehungen: Es sind in der Charnockitfamilie bei gleichem si die Werte al wenig verschieden, fm rechts der Isofalie niedriger, c nahezu gleich, alk etwas höher, al-alk etwas kleiner.

23,5

26

32,5

20,5

18,5

10

Zur romanischen Provinz: bei gleichem si ist in der Charnockitfamilie al etwas niedriger, fm größer, c geringer (siehe jedoch die labradoritische Zweigreihe), alk viel kleiner, al-alk durchwegs größer und viel variabler; die beiden letzten Unterschiede sind prinzipieller Natur; dazu kommt noch der gewaltige Unterschied in den k-Zahlen. k bleibt ja in der Charnockitfamilie immer unter 0,5. Die fm-Kurve der Charnockitprovinzen steigt nach links etwas rascher an als in der inneralpidischen, aber doch viel weniger rasch, als dies das fm der romanischen Provinz tut.

Nach diesem Vergleich dürfte man über die Stellung der Charnockitprovinzen im klaren sein.

Wir kommen zum Schlusse, daß die mit der indischen Charnockit-Anorthositprovinz verwandten Provinzen sich zu einer Familie der Charnockit-Anorthositprovinzen vereinigen lassen, welche als Ganzes der pazifischen Sippe zuzuzählen ist. Sie stellt indessen nicht den extremsten Fall einer pazifischen Familie

7,5

6,5

7,5

100 100,5

100

si	al	fm	c	alk	k	mg	c/fm	ti	р	Schnitt	Analytiker	Magma
482	40	19	7	34	0,49	0,2	0,35	1,2	0,0	III.	H. S. Washington 1916	rapakiwitisch
222	30,5	38	16,5	15	0,17	0,45	0,43	2,1	0	IV.	H. S. Washington 1916	quarzdiorit.
118	16	55,5	20	8,5	0,16	0,35	0,35	3,4		III.	H. S. Washington 1916	normalgabbr.
87	6	78	15	1	0,11	0,70	0,18	1,7	7	п.	H.S.Washington 1916	pyroxenitisch peridoditisch

Aeltere Analysen der

433	38	28	4	30	0,74	0,18	0,16	II.	P. C. Roy 1900	rapakiwitisch
213	32	31	23	14	0,18	0,40	0,72	v.	T. L. Walker 1900	quarzdiorit.
132	20	45	21,5	13,5	0,08	0,28	0,48	IV.	? 1900 ?	gabbrodiorit.
82	10	72	18	Spur	?	0,67	0,25	II.	T. L. Wa lker 1900	pyroxenitisch- peridoditisch

Tabelle 3. Vergleichs-

357	44	12	12	32	0,39	$0,\!25$	1,0	v.	Pisani	1910	yosemititisch
191	35	33	17,5	14,5	0,15	0,50	0,53	IV.	Pisani	1910	q ua rzdiorit.
125	15,5	65	10,5	9	0,10	0,61	0,16	11.	Pisani	1910	pyroxenitisch

0,38 0,24 0,68 2

90,5 6,5 85,5 7,5 0,5 0,17 0,82 0,09

94 8,5 81 10 0,7 0,1 0,8 0,12

 $\mathbf{24}$

224 36,5 24,5 18,5 20,5 0,14 0,44 0,75 1,9

13

347 44

19

Maracas Brasilien

I. H. S. Washington peridoditisch 1914 pyroxenitisch

Montana.

II. L.G.Eakins 1895 pyroxenitischperidoditisch

Ellesmere

v.	P. Schei	1910	yosemititisch
v.	P. Schei	1910	quarzdiorit.

Charnockitserie von Madras, Südindien.

Gestein, Fundort	Mineralbestand
Charnockit, St. Thomas Mount Madras	Quarz, (Orthoklas), Mikroklin, Oligoklase, Hypersthen, Biotit, Magnetit
Quarzhypersthendiorit, Shevaroy Hills, Yer- caud Madras	Quarz-Mikroklin, Oligoklas-Andes., Hypersthen. Apatit, Magnetit (Ilmenit.)
Hornblende-Norit, St. Thomas Mount Madras	Labrador-Andesin, Hypersthen, br. Hornblende mkl. Augit (Olivin), Magnetit, Apatit
Hornblende-Hypersthenite, Pammal Hill, (Bahiait) Pallavaram, Madras	- br. Hornblende, Hypersthen, Mag- netit, Apatit
vorderindischen Charnockits	serie.
Charnockit, Madras	
Intermediäres Glied, Shevaroy Hills, Madras	Quarz, Mikroperthit, Feldspäte, Hypersthen, Augit, Hbl., Biotit
Norit, Madras	
Hypersthenit, Pallavaram, Madras	Hypersthen, Braune Hornblende, Augit (Olivin Spinell?)

gesteine. Elfenbeinküste.

Hypersthengranit, Mount Gbon, Elfenbein- küste	Quarz, Orthoklas, Oligoklasalbit, Hypersthen (Biotit)
Hypersthengranit (Diorit?), Mount Zan, Elfen- beinküste	Quarz, Hypersthen, Oligoklas
Norit, Zoanlé, Elfenbeinküste	Andesin, Hypersthen (50 %), mkl. Pyroxene

Bahiaite.

Hornblende-Hypersthenite, Babiaite, Maracas Bahia

Pyroxenit.

Pyroxenit near Meadow. Creek, Montana

Land.

Hypersthenadamellit, Jones Sound, Ellesmere Land

Hypersthenquarzdiorit, Foulke Fjord, Ellesmere Land

Tabelle 4. Intrusivgesteine von

si	al	fm	c	alk	k	mg	c/fm	ti	рS	chnitt	Analytiker	· Magma
381	47	5,5	7,5	40	0,30	0,28	1,36	0,46	0	VI.	Kolderup 96	aplitgranitisch
324	42	19	15	24	0,16	0,44	0,78	4,0		v.	Kolderup	adamellitisch
262	37	26	15	22	0,41	0,11	0,59	4,5		IV.	Kolderup	normalgranitisch
180	33,5	35,5	13,5	17,5	0,30	0,23	0,39	4		III.	Kolderup	normalsyenitisch
153	48	5	32	15	0,12	0,26	6,2	0	0	IX.	Kolderup	labradorfelsitisch
147	32	34,5	21,5	12	0,17	0,29	0,62	6		IV.	Kolderup	gabbrodioritisch
143	43	14,5	29	13,5	0,11	0,44	2,0	0,4	V	III.	Kolderup	labradorfelsitisch
67,5	11	81,5	5	$2,\!5$	0,02	0,42	0,06	29		I.	Kolderup 1	oyroxenitperidodit

Tabelle 5. Bergen-Jotunstamm

.

401	47	9	5	39	0,51	0,43	0,54	IV.	M. Dittrich	aplitgranitisch
299	44	7	9	4 0	0,26	0,37	1,26	VI.	P. Schei	trondhjemitisch
289	42	14	2	42	0,43	0,21	0,17	II.	O. Rōer	nordmarkitisch
262	46	12	13	29	0,18	0,24	1,11	VI.		plagioklasgranitisch
232	38	20	9	33	0,45	0,21	0,45	IV.	O. Röer	granosyenitisch
186	47	6,5	27,5	19	0,13	0,20	4,34	IX.	Lillejord	andesinfelsitisch
177	38	23	$12,\!5$	26,5	0,31	0,31	0,55	IV.	Lillejord	monzonitfoyaitisch
152	27	40	20	13	0,36	0,49	0,50	IV.	M. Dittrich	normaldioritisch
148	47	$2,\!5$	36,5	14	0,08	0,47	14,6	X.	Lillejord	labradorfelsitisch
145	46	7	35	12	0,05	0,38	5,36	IX.	O. Röer	labradorfelsitisch
132	23	45	21	11	0,28	0,50	0,46	IV.	M. Dittrich	gabbrodioritisch
131	38	24	30	8	0,08	0,63	1,25	VI.	O. Rōer	anorthositgabbroid
123	33	30	27	10	0,20	0,55	0,90	V.	Lillejord	ossipitgabbroid
115	22	49	20	9	0,24	0,46	0,41	III.	M. Dittrich	normalgabbroid
115	28	35	27	10	0,21	0,65	0,77	v.	Lillejord	ossipitgabbroid
112	25	37	25	13	0,25	0,51	0,69	v.	Hjortdahl u. Irgens	sommaitisch
111	27	42	20	11	0,23	0,37	0,47	IV.	Lillejord	ossipitgabbroid
92	12	52	30	6	0,06	0,65	0,58	IV.	Lillejord	pyroxenitisch
89	$22,\!5$	37,5	35	5	0,16	0,80	0,94	v.	Lillejord	pyroxenit-gabbroid
58	3	95	0	2	0,0?	0,89	0,0?	I.		peridoditisch

Rekefjord und Soggendal.

Gestein, Fundort	Mineralbestand
Hypersthengranit, Birkrem, Soggendal	Mikroperthit, Plag. wenig, Hypersthen, viel Quarz, Zirkon, Granat ?
Eypersthenadamellit, Farsund	Quarz, Hornblende (gr. schmutzig), Biotit, Hy- persthen, Labrador, Zirkon, Apat., Ilm., Mikrop.
Banatit, Dypvik, Farsund	Orthoklas, Hornblende, Mikroperthit (Mikroklin) f. ohne Hyp., Quarz, Tit./Ap., Žirkon
Monzonit, Farsund	Quarz, Labrador, Diallag, Biotit, gr.Hbl., Hypersth. od. Apatit, Zirkon, Ilmenit, Bronzit
Labradorit, Ogne	Labrador bis 12 cm, rhom. Pyrox. (wenig), Biotit, Apatit, Ilmenit
Quarznorit, Rekefjord, Soggendal	wenig alk. Feldsp., Andesin-Albit, (Biotit) (Quarz), Mikroperthit, Hyp., mkl. Pyrox., Zirkon, Ilmenit
Labradoritnorit, Ekersund	Labrador, Hypersthen, Biotit, wenig Apatit, Ilm.
Ilmenitnorit, Rekefjord (Storgangen)	Ilmenit, Bytownit-Labrador, Hypersthen, Mag- netit, Apatit, Pyrit, Spinell

der Eruptivgesteine, Norwegen.

Biotitgranit, Synshorn, Jotunheimen	Biotit-Mikroperthitgranit							
Hypersthengranit (Birkremit), Prestun Saeter	Mikropertbit (Oligoklasalbit), Quarz, Hypersthen, Augit (Erz)							
Aegiringranit, Jonsskardeld	Albit, Mikroperthit, Quarz, Aegirin, Arfveds., Hbl. Biotit, Tit., Zirkon, Apatit, Erz							
Weisser Ganggranit in Labradorfels								
Hypersthensyenit, Suletind	Mikroperthit, Hypersth., Pyroxen (Quarz) (Akzess.							
Andesinfels, Fosse								
Natron-Glimmersyenit, Tunaes, Sörfjord								
Mangerit-Uebergangstypus zu Jotunnorit, W. Bitihorn, Jotunheimen saussuritisierter Labradorfels, Rõssaland auf Holsenö	Mikroperthit, Plagiokl., Hypersthen (mkl. Augit) (Biotit) Quarz, Erz)							
Labradorfels (mylonitisiert), Espedalen								
Jotunnorit, Jotunheimen	Plag., antiperthitischer Orthoklas (Erz, Biotit, Hbl. Quarz), Hypersthen (mkl. Augit)							
Labradorfels, Espedalen								
Labradorfels (saussuritisiert hornblendisiert) Skouge Lindaas	Plagiok 40 % A	ias (6 0 % An b)						
Saussuritamphibolit (metamorpher Gabbro), am See Tvin	Hypers	then						
Granat- und Diallag reicher Labradorfels, Saebō auf Radō	Labradorfelse vorwiegend (mkl. A	ugit)						
Sogenannter (unreiner) Labradorfels, Elsfjeld								
Mangerit, Tyeit, Manger								
aniferiti Traiti manfor								
Eklogit, Landsvik, Holsenö								
Eklogit, Landsvik, Holsenö Olivingabbro, Skeie bei Os								

٠

si	al	fm	c	alk	k	mg	c/fm	ti p	Schnitt	Analytiker	Magma
301	39	19	10	32	0,53	0,10	0,56		IV.	Morley	rapakiwitisch
280	40	17	10	33	0,47	0,27	0,62		IV.	Morley	granosyenitisch
273	41	13	11	35	0,38	0,06	0,83		v.	Morley	granosyenitisch
202	39	23	12	26	0,34	0,17	0,53		IV.	Morley	monzonitsyenit
155	29	3 6	19	16	0,35	0,28	0,53		IV.	Morley	normaldiorit.
113	20,5	50	20,5	9	0,19	0,38	0,42		III.	W. F. Hillebrand	normalgabbroid
109	23	46	20	11	0,26	0,39	0,43		III./IV.	Morley	normalgabbroid
109	23	46	21,5	9,5	0,13	0,46	0,47		IV.	W.F.Hillebrand	normalgabbroid
102	17	51	25	7	0,20	0,36	0,49		IV.	G. Steiger	normalgabbroid
92	19	58,5	16,5	6	0,11	0,57	0,28		III.	W.F.Hillebrand	gabbroid
35	7	86	6	1.	0,31	0,20	0,08	6,5	Ι.	W.F.Hillebrand	
21	6	86	7	1	0,27	0,10	0,09	15	I.	W.F.Hillebrand	
163	46,5	6,5	32	15	0,14	0,51	5,06		IX.	Leeds	labradorfelsit.
158	45	7,5	33,5	14	0,12	0,41	4,60	1	IX.	Leeds	labradorfelsit.
145	37,5	18	32,5	12	0,12	0,59	1,80		VII.	G. Steiger	anorthositgabbr.
143	39,5	19	30	11,5	0,20	0,26	1,41		VI.	Morley	anorthositgabbr.
109	25	47	20,5	7,5	0,17	0,51	0,44		IV.	W.F.Hillebrand	Lormalgabbrok
							tige balance				
208	31	34	15	20	0,41	0,11	0,43		III./IV.	Morley 1	ormalsyenitisch
171	36,5	20,5	30	13	0,24	0,52	1,49		VI.	W.F.Hillebrand	anorthositgabbr
156	35	28	16,5	20,5	0,30	0,31	0,60		IV.	Morley	anorthositgabbr.
				n					1		

Tabelle 6. Einige Intrusivgesteine

,

der Adirondack Region, New York.

Gestein, Fundort	Mineralbestand				
Quarzsyenit, Altamont, Franklin Co.					
Augitsyenit, Little Falls, Herkimer Co.	Mikroperthit, Oligoklas, Hypersthen, mkl. Augit,				
Augitsyenit, Harrisville	Quarz u. Magnetit, + Apatit, Titanit (Hbl. u. Biotit)				
Augitsyenit, Tupperlake					
Basischer Syenit, Raquette Falls.	Hypersthen, mkl. Augit > Feldspäte				
Norit (Camptonose), Elizabethtown	Labradorit, Hypersthen, Granat, gr. Augit, braune Hornblende, Biotit, Magnetit, Apatit				
Gabbrogang, Micholville, St. Lawrence Co.					
Gneisartiger Gabbronorit (Camptonose), Elizabethtown					
Gabbronorit (Camptonose), Lincoln Pond	Grüner Augit, Hypersthen, br. Hbl., Plagioklas, Mikroperthit, Magnetit				
Diabasnorit od. Gabbro (Auvergnose), Elizabethtown					
Magmatisches Erz, Elizabethtown					
Magmatisches Erz, Elizabethtown					
ь.					
Anorthosit, Mount Marcy					
Anorthosit, Mount Marcy					
Pyroxenitischer Anorthosit, Whiteface, Mountain	Labradorit, heller Augit, br. Hblende, Biotit, Magnetit				
Anorthositgabbro, Altona, Clinton Co.					
Gabbro (Hessose), Split Rock Mine	Augit, Hypersthen, br. Hblende, Granat, Plag., Magnetit				
Augitsyenit, Altamont					
Pyroxenanorthosit (Hessose), Elizabethtown	Labradorit (Augit, Hornblende, Magnetit)				
Vebergang v. Anorthosit zu Augitsyenit, Altamont, Franklin Co.					

 \mathbf{x}

.

dar, sondern einer Familie, die schwache Anklänge an die Familien der beiden andern Sippen aufweist.

Meinem verehrten Lehrer, Herrn Prof. P. Niggli, möchte ich meinen besten Dank aussprechen für die vielen Hinweise, die er mir bei der Zusammenstellung zukommen ließ.

Mineralogisch-petrographisches

Institut Zürich, November 1922

Manuskript eingegangen 13. November 1922.

Benutzte Literatur.

- 1. Niggli P., Lehrbuch der Mineralogie. Berlin 1920.
- 2. Niggli P., Petrographische Provinzen der Schweiz. Heimfestschrift Zürich 1919.
- 3. Niggli P., Gesteins- und Mineralprovinzen, Bd. I. Berlin, Bornträger. 1923.
- 4. Niggli P., Der Taveyannazsandstein und die Eruptivgesteine der jungmediterranen Kettengebirge. Diese Zeitschrift, dieses Heft. p. 169--275.
- 5. Goldschmidt V. M., Die Stammestypen der Eruptivgesteine Kristiania Vid. Skr. I. mat. nat. Klasse Nr. 10. 1922.
- 6. Goldschmidt V. M., Geologische und petrographische Studien im Hochgebirge des südlichen Norwegens, Bd. IV. Vid. Skr. I. mat. nat. Klasse 1916. Nr. 2.
- 7. Washington H. S., The Charnockite Series of igneous Rocks. Am. Jour. of Science. Vol. XLI 1916, p. 323 ff.
- 8. Lacroix A., C. R. de l'ac. d. sc. Bd. 150, 1910, p. 18 ff.
- 9. Kolderup F., Labradorfelse des westlichen Norwegens. Bergens Mus. Aarb. 1896.
- 10. Cushing H. P., Asym. Differentiation in a Bathylith of Adirondacksyenite. Bull. geol. soc. of Am. 18. 1907. p. 493 ff.
- 11. Rosenbusch H., Elemente der Gesteinslehre. Stuttgart 1910.
- 12. K e m p J. F., U. St. Geol. Survey 19. Ann. Rep. (pt. 3), p. 383. Bull. 419, p. 26 (1910).

Die Analysen zur Berechnung der Gesteine wurden lit. 6-10 und lit. 12 entnommen.