Zeitschrift:	Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band:	32 (1952)
Heft:	1
Artikel:	Propriétés optiques et structurales des isomères de l'hexachlorocyclohexane
Autor:	Lorétan, Marco F.
DOI:	https://doi.org/10.5169/seals-25823

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 16.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Propriétés optiques et structurales des isomères de l'hexachlorocyclohexane

Par Marco F. Lorétan

Avant-propos

Avant d'aborder le sujet de cette thèse, je me fais un devoir bien agréable d'exprimer ma reconnaissance à tous ceux qui, à divers titres, ont permis la réalisation de ce travail.

En tout premier lieu, que mon vénéré Maître, M. le Professeur Déverin, veuille bien trouver ici l'expression de ma profonde gratitude. C'est sur son initiative que fut créée la Salle des Radiations de l'Université de Lausanne, dont les instruments ont permis d'élaborer le matériel sur l'analyse duquel se base cette étude. C'est à son enseignement que je dois les quelques connaissances de cristallographie que je possède. C'est en m'accueillant comme assistant dans son laboratoire qu'il a permis à ce travail d'être mené à chef, alors que des conditions matérielles précaires allaient y mettre abruptement un terme.

Je remercie très sincèrement la Société Anonyme pour la Fabrication du Magnésium, pour laquelle je travaillais lorsque je commençai ces recherches, d'avoir bien voulu mettre les isomères étudiés à ma disposition. Que mes amis, Messieurs Perrochon, Monnier et Merminod veuillent bien accepter mon tribut de reconnaissance pour toutes les facilités dont leur très amicale sollicitude m'a fait bénéficier.

Lausanne, en août 1951.

Table des matières

Introduction .	•	•	•						•	•	١.		•	÷		a.	•		•	•								112
Subdivision du	tre	ave	ail	•	•	•		•		•	•	•	•	•			•	•	•	•	•	•	•	•	•	•		114
Cristallisation.										•							•		•		•	•	•		•	•		114
Détermination	du	sy	st	èm	e	\mathbf{cri}	ista	all	in	•		•	•				•	•	•	•	•	•	•		•	٠	•	117
Détermination	des	зр	ar	am	nèt	re	s a	to	m	iqu	ies		•					•					•	•		•		119
Détermination	de	la	de	ens	ite	é d	les	is	on	nèr	es	et	; C	alc	ul	d	a 1	101	mł	ore	Z	•	•		•	•		128
Essai de réduct	ior	ı d	e]	a	m	aill	le (de	s i	sor	nè	re	s n	no	no	cli	nie	qu	es						•	•		130

Détermination du groupe spatial	148
Détermination des caractères optiques	152
Conclusion	156
Références bibliographiques	159
Tableau récapitulant les caractères cristallographiques déterminés	159

Introduction

Les hexachlorocyclohexanes sont des dérivés d'addition du benzène. Leur formule chimique est $C_6H_6Cl_6$.

C'est Faraday qui, en 1825, obtient pour la première fois de l'hexachlorocyclohexane. En 1836 Péligot et Lauret en établissent la formule. En 1887 Meunier en extrait deux isomères, l' α et le β ; Van der Linden, en 1912, en extrait quatre, l' α , le β , le γ et le δ .

Les hexachlorocyclohexanes s'obtiennent par action du chlore gazeux sur le benzène à la température ordinaire. La réaction, qui nécessite le concours d'énergie lumineuse, est accélérée par des radiations violettes et ultra-violettes. Le dispositif utilisé est schematiquement représenté ci-dessous.

Le chlore sous pression est contenu dans le cylindre Cl_2 . Ce cylindre est placé sur le plateau d'une balance afin que l'on puisse contrôler rigoureusement la consommation de chlore. Le courant de chlore, réglé par un mano-détendeur M, pénètre par le fond dans le cylindre de réaction R,

rempli au trois quarts de benzène. Sous l'action des radiations émises par une série de lampes à rayons ultraviolets L, le chlore réagit avec le benzène pour former essentiellement de l'hexachlorocyclohexane et additionnellement une série de produits de substitution, dont la proportion dépend, notamment, de la présence de certaines impuretés dans le benzène. La formation de produits de substitution est accompagnée de formation d'acide chlorhydrique. Cet acide entraînant de l'hexachlorocyclohexane, l'appareillage est complété par une tour de lavage T, où les vapeurs d'acide chlorhydrique, aspirées par un ventilateur V, sont lavées par une pluie de benzène qui récupère l'hexachlorocyclohexane entraîné.

Les produits de réaction obtenus, dissous dans un excès de benzène, sont recueillis dans un récipient de stockage S. On extrait le produit brut en évaporant à sec la solution benzénique, et on isole les isomères par cristallisation fractionnée. Ces isomères sont caractérisés par leurs points de fusion: 158° C pour l'isomère α , 309° C pour l'isomère β , 112° C pour l'isomère γ et 138° C pour l'isomère δ .

Des essais, réalisés en 1943 par F. J. D. Thomas, ont montré que l'isomère γ possède de remarquables propriétés insecticides. Cette constatation valut à l'hexachlorocyclohexane l'intérêt du monde industriel et financier; et, par ce fait, un nombre considérable de travaux furent publiés à son sujet. Ces travaux peuvent être répartis en deux classes; ceux de la première classe, d'intérêt essentiellement biologique et parasitologique, traitent des effets de l'hexachlorocyclohexane sur l'organisme des insectes les plus divers; ceux de la seconde classe, fournissent des indications sur les propriétés chimiques et physiques des isomères.

C'est en utilisant ces propriétés chimiques et physiques que des laboratoires du monde entier ont mis-au point des méthodes d'analyse quantitative des isomères très variées, mais qui exigent toutes un appareillage assez compliqué [2, 3, 4, 5, 6].

Placés en 1945 devant le problème de l'élaboration d'une méthode radiocristallographique d'analyse quantitative d'un mélange d'isomères α , β , γ et δ , nous avons dû constater que les bases d'élaboration d'une telle méthode, c'est-à-dire la connaissance des caractéristiques du réseau cristallin des divers isomères, faisaient presque totalement défaut. Seul le réseau de l'hexachlorocyclohexane β était connu [8]. Il appartient au système cubique et se range dans le groupe spatial Pa 3.

Il était donc nécessaire, avant d'aborder le problème de l'élaboration de la méthode d'analyse, d'établir les caractéristiques cristallographiques des réseaux des isomères α , γ et δ . C'est la recherche de ces caractères qui fait l'objet de la présente thèse.

8 Schweiz. Min. Petr. Mitt., Bd. 32, Heft 1, 1952

Subdivision du travail

La détermination des caractères du réseau cristallin des isomères α , γ et δ a été faite en utilisant les méthodes classiques goniométriques et roentgenographiques. Le travail a été réalisé en six étapes qui sont les suivantes:

- 1º cristallisation des isomères;
- 2^o détermination du système cristallin à l'aide d'une analyse goniométrique;
- 3º détermination des paramètres atomiques le long des axes cristallographiques choisis, au moyen de diagrammes de cristal tournant, et calcul du volume de la maille élémentaire construite avec ces unités;
- 4^o détermination de la densité des isomères et calcul du nombre Z de molécules par maille élémentaire trouvée;
- 5^o examen des possibilités de réduction de la maille élémentaire trouvée à une maille de volume moindre, par l'étude des taches de diffraction de diagrammes de Laue;
- 6º détermination du groupe spatial, par l'étude des taches de diffraction des mêmes diagrammes de Laue et de celles de diagrammes de Schiebold-Sauter.

Chacune de ces étapes sera l'objet d'un chapitre que nous allons développer. Nous ajouterons encore un septième chapitre dans lequel nous donnerons les résultats de nos observations sur les caractères optiques des isomères, caractères que nous avons tenu à examiner à titre de vérification, et qui, dépendant de la symétrie du réseau, sont venus confirmer au cours de cette étude les résultats obtenus par ailleurs.

En passant nous noterons également les résultats de nos mesures sur des cristaux d'isomère β , résultats qui sont en parfait accord avec les données de la littérature.

Cristallisation

Les isomères réputés purs ont été extraits du produit brut à l'Usine du Magnésium, à Martigny (Suisse). Ces isomères nous ont été remis à l'état d'amas cristallins non utilisables directement pour les déterminations cristallographiques.

La recristallisation s'est effectuée à température ambiante par évaporation lente de solutions: dans l'alcool méthylique et dans le benzène pour l'isomère α , dans l'alcool méthylique pour l'isomère β , dans

l'alcool méthylique et dans le tétrachlorure de carbone pour l'isomère γ et dans le tétrachlorure de carbone pour l'isomère δ . Notre choix s'est porté sur ces solvants après examen d'un tableau de la solubilité des isomères dans un grand nombre de solvants, donné par SLADE [1].

Disposant d'une quantité suffisante d'isomères α , β et γ , nous avons obtenu les cristaux isolés de ces isomères sans trop de difficulté; l'obtention de cristaux bien formés d'isomère δ n'a, en revanche, pas été sans peine. Nous ne disposions que d'une très petite quantité de cet isomère. Pour obtenir des cristaux d'une certaine taille nous fûmes donc obligé d'opérer dans des cristallisoirs de petites dimensions. Cette condition est très défavorable; elle entraîne, en particulier, l'amorce de la cristallisation le long des parois, où elle se poursuit d'une façon confuse en formant des amas d'aiguilles. Nous attribuons ce phénomène au fait suivant: la plupart des germes produits à la surface de la solution, refroidie dans cette zone par l'évaporation, sont entraînés par les courants de convection vers les parois avant d'atteindre un poids qui les eût fait tomber au fond de la solution.

Nous avons constaté au cours de toutes ces cristallisations une tendance très marquée des solutions à la sursaturation. Le poids de substance dissoute peut dépasser de 100% le poids de la substance en solution à l'état saturé. Cette sursaturation est évidemment néfaste à la cristallisation en formes parfaites; elle provoque une cristallisation précipitée, donnant une grande proportion de cristaux mal formés et se groupant en amas.

Les cristaux d'isomère α obtenus à partir de solutions dans l'alcool méthylique et dans le benzène, présentent le même habitus, c'est-à-dire que ce sont les mêmes faces extérieures qui limitent les cristaux dans les deux cas. Le faciès, c'est-à-dire le caractère de développement relatif des faces, est tabulaire.

Les cristaux de l'isomère β se présentent en octaèdres dont les sommets sont parfois tronqués par une face perpendiculaire aux axes quaternaires.

Les cristaux de l'isomère γ présentent pour les individus provenant de la solution dans l'alcool méthylique un habitus différent de celui des individus issus de la solution dans le tétrachlorure de carbone. Les seconds possèdent les faces des deux hémipyramides fondamentales, qui manquent aux premiers; ceux-ci, en revanche, portent des faces de dôme qui ne se retrouvent pas sur les autres. Les cristaux provenant de la solution dans l'alcool méthylique se présentent en outre avec deux faciès différents, un faciès tabulaire et un faciès prismatique.

y

Figure 2

 \mathbf{a}

Les cristaux de l'isomère δ se présentent sous deux faciès: faciès tabulaire assez semblable à celui de l'isomère α et un faciès prismatique.

La planche qui suit permet de se faire une idée très nette de l'aspect de ces cristaux.

En faisant cristalliser une fraction d'isomère fondant à la température de fusion de l'isomère δ nous avons obtenu, dans des conditions de cristallisation apparemment identiques aux conditions décrites, des lamelles hexagonales extrêmement minces, adhérant fortement aux parois du cristallisoir. Nous n'avons pas pu détacher ces lamelles des parois du cristallisoir sans provoquer des craquelures au sein de leur masse. D'une part ces lamelles étaient trop minces pour servir à des mesures goniométriques. D'autre part les dégâts causés étaient trop importants pour permettre l'enregistrement de diagrammes de Laue sans ambiguïté. Mais elles ont été suffisantes pour obtenir des diagrammes de cristal tournant satisfaisants et pour faire une analyse microscopique.

Ayant des doutes sur l'identité de ces lamelles, nous les avons, sur le conseil de M. le Professeur Goldstein, envoyées à fin d'analyse au laboratoire du Dr. Ritter à Bâle qui exécute les analyses pour les travaux de recherche de l'Ecole de Chimie de l'Université de Lausanne. L'analyse faite par ce laboratoire a confirmé qu'il s'agissait bien d'hexachlorocyclohexane. Puisque cet hexachlorocyclohexane fond à 138° comme l'isomère δ , mais s'en distingue par les caractères morphologiques, nous le désignerons par $\delta_{\rm H}$.

Détermination du système cristallin

La détermination du système cristallin auquel appartiennent les isomères α , β , γ et δ a été faite à l'aide d'un goniomètre à deux cercles de Goldschmidt. Les cristaux utilisés étaient d'une dimension de $(2 \text{ mm})^3$ environ.

Le goniomètre de Goldschmidt, soigneusement réglé, permet de déterminer l'angle de deux faces d'un cristal à deux minutes de degré près. Nous avons vérifié le réglage en mesurant les angles entre les macropinacoïdes et les brachipinacoïdes d'un cristal très parfait de triborate de potassium ($B_3O_5K\cdot 4H_2O$), substance orthorhombique cristallisant avec les formes {100}, {010}, {310}, {011} et {101}. Nous avons obtenu pour les angles que forment les pinacoïdes entre eux les valeurs de 90° 01', 90° 00', 90° 01' et 89° 59'. Toutes ces valeurs sont comprises dans les limites d'erreur et garantissent par conséquent le réglage de l'appareil.

La remarquable régularité des résultats de mesure obtenue pour les

faces de pinacoïde du cristal de triborate de potassium n'a pas été retrouvée lorsque nous avons mesuré les angles entre les faces des isomères de l'hexachlorocyclohexane. Cela est dû au fait que la plupart des réflexions étaient dédoublées ou floues, les cristaux étant imparfaits; et cette imperfection provient des conditions défavorables à leur croissance.

Nous donnons ci-dessous les résultats de nos mesures sous forme de tableaux. Les projections stéréographiques qui accompagnent les dessins des cristaux de la planche précédente sont l'expression synthétique de ces mesures. Anticipant sur ce qui va suivre, nous avons désigné les faces par les indices de Miller déduits des constantes du réseau. Les pôles des faces généralement présentes sur le cristal sont représentées par des cercles pleins (noirs), les pôles des faces dont la présence est moins constante par des cercles vides (blancs), bordés d'un trait gras, et les pôles des faces exceptionnellement présentes par des cercles vides, bordés d'un trait mince.

Isomère α	angles mesurés	Isomère γ	angles mesurés	angles calculés
	$\pm 0^{\circ} 1/4$		$\pm 0^{\circ} 1/4$	$\pm 0^{\circ} 1/4$
(100) / (110)	43°	(100) / (210)	35° 1/2	
(110) / (010)	47°	(210) / (010)	54° 1/2	
(110) / (570)	9° 1/2	(100) / (101)	36° 3/4	
(570) / (120)	9° 1/4	(101) / (001)	34°	
(120) / (010)	28° 1/4	(001) / (100)	109° 1/4	
(100) / (001)	68° 3/4	(001) / (012)	32° 3/4	,
$(001) / (\overline{2}01)$	56° 1/4	(012) / (010)	57° 1/4	
$(\overline{2}01) / (\overline{1}00)$	55°	(101) / (111)	-	39° 3/4
(001) / (011)	25° 3/4	(111) / (010)		50° 1/4
(011) / (010)	64° 1/4	(111) / (010)		41°
	Isomère d	angles mesurés	angles calculés	
		$\pm 0^{\circ} 1/4$	$\pm 0^{\circ} 1/4$	
	(100) / (210)	37° 3/4		
	(210) / (010)	52° 1/4	•	
	(100) / (201)	19° 1/2		
	(100) / (001)	73° 1/2		
	$(001) / (\overline{1}01)$	62° 1/4		
	$(\overline{1}01) / (\overline{1}00)$	44° 1/4		
÷	(001) / (012)	44° 1/4		
	(012) / (010)	45° 3/4		
	$(010) / (\overline{1}11)$	in the state of th	35°	
	(111) / (101)		55°	
		12		

Les mesures goniométriques faites pour chaque isomère sur quatre cristaux au moins, ont confirmé les caractères de symétrie connus du

réseau cristallin des isomères α et β ; elles ont révélé ceux des isomères γ et δ encore inconnus à l'époque où nous faisions ces mesures.

L'hexachlorocyclohexane α est monoclinique holoèdre, l'hexachlorocyclohexane β est cubique, l'hexachlorocyclohexane γ est monoclinique holoèdre, l'hexachlorocyclohexane δ est monoclinique holoèdre.

Ces caractères de symétrie et le développement remarquable de certaines faces de la zone [010] nous ont guidés dans de choix des axes cristallographiques provisoires. On reconnaît sur les projections stéréographiques qui précèdent, que l'angle entre les axes non perpendiculaires des isomères α , γ et δ sont presque égaux et voisins de 110°.

Un des cristaux de l'isomère δ ayant servi aux mesures goniométriques était maclé. Le plan d'association de la macle était celui que nous avons choisi comme plan (001).

Les diagrammes de Laue enregistrés en vue de la discussion relative aux essais de réduction de la maille des isomères monocliniques ont confirmé les caractères de symétrie mis en évidence par les mesures goniométriques. Pour l'isomère $\delta_{\rm H}$ ces diagrammes, trop peu nets pour servir à la détermination du groupe spatial, étaient suffisants pour déterminer le système cristallin; la présence d'un plan de symétrie perpendiculaire à l'axe principal, lui-même normal aux lamelles hexagonales, permet d'affirmer que l'isomère $\delta_{\rm H}$ cristallise dans le système hexagonal.

Détermination des paramètres atomiques

Nous avons déterminé les paramètres atomiques le long des axes cristallographiques par la méthode du cristal tournant (méthode de Polanyi). La caméra utilisée est une caméra de Seemann dont le rayon est de 31,7 mm. Les radiations diffractées étaient les radiations émises par une ampoule de Philips à anticathode de cobalt. Les diagrammes ont été enregistrés sur films Agfa-Roentgen, Gevaert-Osray et Kodak Medical X-ray, révélés durant 5 minutes au révélateur Gevaert 102 dur. La mesure de la distance des parallèles à la ligne équatoriale a été faite sur chambre claire, à l'aide d'un chariot porteur d'une loupe. Cette loupe est munie d'un réticule au moyen duquel on vise les lignes. Le chariot se déplace le long de deux graduations rectangulaires dans un plan parallèle au film. Un des déplacement est commandé par une vis micrométrique et sa valeur peut être lue sur un vernier au cinquantième de mm.

La précision des valeurs obtenues pour les paramètres atomiques dépend essentiellement du centrage du dispositif expérimental. Pour que ce centrage soit parfait il faut: 1º que le faisceau incident soit parfaitement perpendiculaire à l'axe de rotation du cristal, 2º que l'axe de rotation du cristal coïncide exactement avec l'axe de la caméra cylindrique à l'intérieur de laquelle on applique de film, et 3º que l'axe de rotation du cristal coïncide parfaitement avec la direction cristallographique le long de laquelle on veut mesurer le paramètre. Les deux premières conditions ont été réalisées par le constructeur de la caméra, la troisième, le centrage du cristal, est vérifié à l'aide d'un système collimateur-lunette adapté au bâti qui supporte la caméra. Ce système est analogue à celui du goniomètre de Goldschmidt, mais d'une exécution plus rudimentaire. Les réflexions observées sont donc bien moins nettes que celles obtenues avec le goniomètre de Goldschmidt. Les difficultés que nous avons rencontrées lors des mesures goniométriques ont encore été accrues lors du centrage des cristaux en vue des diagrammes de rayons X.

Nous donnons ci-après, sous forme de tableaux, les résultats de la résolution de chacun de nos diagrammes de cristal tournant. Dans ces tableaux 0 désigne l'ordre de la réflexion, H la distance en 0.01 mm de la ligne correspondante à la ligne équatoriale (movenne de trois mesures) et d la valeur en å du paramètre déduit des deux premières données. ---Les résultats relatifs à une même direction cristallographique sont réunis dans un graphique. Dans ce graphique un trait plein qui, à une échelle déterminée, s'arrête à la valeur minima donnée par les calculs pour se poursuivre en trait triple jusqu'à la valeur maxima, correspond au paramètre trouvé en résolvant un diagramme. Cette schématisation qui montre la dispersion des résultats rendra compte de la précision du centrage.

Hexachlorocyclohexane α

				้ล	xe [10	0]	paran	nètre a	0				
Di	agram	me 149)						4.4				
0	6	5	4	3	2	l	1	2	3	4	5	6	
H	4663	2994	2094	1438	904	438	446	928	1442	2102	3000	4604	
d	12,96	13,01	12,97	12,98	13,03	13,06	12,83	12,72	12,95	12,94	13,00	13,02	Å
Di	agram	me 154	Ŀ										
0		5	4	3	2	1	1	2	3	4	5	6	
н		3021	2102	1445	907	443	454	923	1458	2110	3030	4649	
d		12,95	12,93	12,92	12,99	12,91	12,60	12,78	12,83	12,90	12,93	12,98	Å

\mathbf{D}^{j}	iagram	me 156	3					c					
0		5	4	3	2	1	1	2	3	4	5	6	
\mathbf{H}		3004	2102	1442	912	447	454	925	1459	2116	3037	4694	
d		12,99	12,93	12,95	12,93	12,80	12,60	12,76	12,82	12,87	12,92	12,94	Å
				3									
			Dispe	ersion o	les val	eurs ex	ctrême	s trouv	rées po	ur a ₀			
	, T	0.000.000	ma 140						12,72	2	13,06	0	
	D_{i}	agrann	ne 149	·							,	A	
	Di	ลงหลากา	me 154						12,6	0 _	12,99	0	
				· }	· <u></u>		*		<u>`</u>			A	
	Di	agramı	me 156	L					12,6	0	12,99	٥ ٨	
		0		,								A	
				я.	xe [0]	D1	naram	ètre h					
Di	agram	me 140)	u	AC LOI	0]	paran)				
0		5	4	3	2	1	1	2	3	4	5		
н		3069	2120	1458	920	446	44 0	920	1447	2116	3033		
d		12,85	12,86	12,83	12,82	12,83	13,00	12,82	12,91	12,87	12,92	Å	
Di	aorami	me 141											
0	معتمي			0	0	ч.	4	0	ā		-	•	
U П	1000	900F	4 0169	0 1470	2	1	459	2 095	0 1454	4	9060	0	
п d	4809	5085 12.81	2105 12.68	1472 12.73	947 12.73	440 12.85	452 12.66	920 12.76	1404	2120 12.83	12.85	4708	Å
	,	,	,	,	,	,00		,	,0,0	,00	,00	,00	
Di	agram	me 142	;										
0	6	5	4	3	2	1	1	2	3	4	5	6	
\mathbf{H}	4695	3070	2121	1466	929	449	458	921	1467	2134	3095	4819	
d	12,94	12,84	12,85	12,77	12,71	12,74	12,50	12,81	12,76	12,80	12,79	12,83	Å
								×.					
			Disper	rsion d	es vale	urs ex	trêmes	trouve	ées pou	ır b _o			
			20						12 8	2	13.00	0	
	Dia	gramn	ne 140	H	<u> </u>	. <u></u> .					,	A	
	D '		1/1						12.6	6	12,88	0	
	.Dia	gramn	10 141	 						8		A	
	Die	anon	na 149						12,	50 _	12,94	0	
	Dia	gramm	10 142	 								A	
D:	0.0000	ma 149		a	xe [00]	[]	param	ètre c _o					
1)I	agrami	ne 143	0	3	2	1	1	2	3				
			н	4362	2054	893	896	2033	4356				
			d	6,63	6,57	6,59	6,57	6,62	6,63	Å			

Diagram	ne 144			•					
0		0	3	2	1	1	- 2	3	
		н	4213	2011	894	884	2016	4372	
		d	6.71	6.67	6.58	6.65	6.66	6.62 Å	
7		2	0,12	0,01	0,00	0,00	0,00	0,0- 11	
Diagramı	me 145						_		
		0	3	2	1	1	2	3	
		\mathbf{H}	4318	2002	868	876	2002	4309	
		d	6,65	6,69	6,77	6,71	6,69	6,66 Å	
		Disp	ersion o	les vale	ours ext	rêmes	trouvé	es pour c	0
		Diag	ramme	143) ——		6,57	- B ^{6,63}	ł ł
		Diag	ramme	144	}		6,58	-B ^{6,71} Å	, A
							6 6 6	6 71 0) .
		Diag	ramme	145	ļ		0,05	- 8 °,″ A	ł
			$\mathbf{H}\mathbf{\epsilon}$	xachl	orocy	clohex	ane /	3	
					v	2		-	
			ax	e [110]	pa	ramètr	ea₀ γ	2	
Diagram	me 123								2
-	0	4	3	2	1	1	2	3	4
3	H 1	836	1280	792	392	400	822	2 1310	1860
	$\frac{\mathrm{d}}{\sqrt{2}}$ 1	0,05	10,12	10,36	10,17	10,24	10,1	8 9,98	10,02 Å
Diagram	ne 125								
Diagram	nc 120		9	9			õ	9	
	0	4	3	Z	1	1	z	3	4
	H 1	828	1270	792	403	395	818	3 1280	1864
1	$\frac{\mathrm{d}}{2}$ 10	0,12	10,19	10,43	10,02	10,22	10,1	1 10,13	9,97 Å
		Disp	ersion d	les vale	eurs ext	rêmes	trouvé	es pour a	' 0
		-					0	- 10 1/	0.76 0
	Diagra	amme	123		.	······	9,3		A A
8	Diagra	amme	125	L			9,	97 1	7,43 °
	0-								~
		,	TT	1.1				2	
			He	xachi	orocy	clohex	cane ;	Ŷ	
Diagram	ne 101		a	xe [100)]]	paramè	tre a _o		
0	4	3	2	1	. 1	L .	2	3 4	4 5
ਸ	1683	120	3 77	1 38	6 30	3 7	94 1	218 17	09 2384
d	15,24	15,1	1 15,1	12 14,	78 14	52 14	,71 1	4,95 15	,06 14,87 Å

122

	agramı	ne 138	1										
		0	7	6		5	4	3	2	1			
		\mathbf{H}	440	309	94 22	244 1	673	1188	769	369			
		d	15,4	1 15,	35 15	,46 1	5,31	15,28	15,16	15,48	5 Å		
		0	. 1-	2		3	4	5	6	7			
		н	378	- 77	0 11	93 1	680	2257	3091	4419	L		
	7	d	15,0	9 15,	14 15	,22 1	5,26	15,40	15,36	15,39	Å		
											C.		
			Dispe	rsion d	les val	eurs ex	trême	s trouv	ées po	ur a _o			
	D:		01						14	,52	15,	24 °	
_	Diagra	mme 1	OT F				· · · · · · · · · · · · · · · · · · ·			<u></u>	3	A	
]	Diagra	mme l	38 ₊		a ¹⁶				13	15,0 9	- = ¹⁵ ,	46 ° A	
	8												
				8	xe [0]	01	naran	nètre b	•				
Di	agramı	ne 104	:	u		~ J	P		U				
	-	0	4	3	2	1	1	2	3	4			
		\mathbf{H}	3119	1973	1180	565	568	1177	1964	3134			
		d	10,19	10,15	10,24	10,18	10,13	10,27	10,18	10,17	Å		
			Dispe	rsion d	les val	eurs ex	trême	s trouv	vées po	ur b _o			
			-						1.00				
									10 17	10 2	70		
		Diag	ramme	ə 104					10,13	-e <i>10,2</i>	⁷ Å		
		Diag	ramme	ə 104	۰			<u></u>	10,13	-8 ^{10,2}	⁷ Å		
		Diag	ramme	ə 104	ب			àtro o	10,13	-8 ^{10,2}	A Å		
Di	aorami	Diag me 98	ramme	ə 104 a	► xe [00	1]	paran	nètre c _o	<i>10,13</i>	-8 ^{10,2}	⁷ Å		
Di	agramı	Diag ne 98 5	ramme	e 104 a	↓ xe [00 2	1]	paran	nètre c _o	<i>10,13</i>	-8 ^{10,2}	5 5		
Di 0 H	agramı	Diag ne 98 5 3373	ramme 4 2218	ə 104 a 3 1492	×e [00 2 933	1] 1 438	paran 1 428	nètre c _o 2 848	<i>10,13</i>	-8 ^{10,2}	²⁷ Å 5 2350		
Di 0 H d	agram	Diag ne 98 5 3373 12,26	4 2218 12,47	a 104 a 3 1492 12,59	xe [00 2 933 12,67	1] 1 438 13,06	paran 1 428 13,36	nètre c _o 2 848 13,83	<i>10,13</i> 3 1272 14,40	-fi ^{10,2} 4 1782 14,59	⁷ Å 5 2350 15,00	Å	
Di 0 H d	agramı	Diag ne 98 5 3373 12,26	4 2218 12,47	a 3 1492 12,59	↓ 2 933 12,67	1] 1 438 13,06	paran 1 428 13,36	nètre c _o 2 848 13,83	<i>10,13</i> 3 1272 14,40	-fi ^{10,2} 4 1782 14,59	⁷ Å 5 2350 15,00	Å	
Di 0 H d	agramı agramı	Diag ne 98 5 3373 12,26 ne 127	4 2218 12,47	a 3 1492 12,59	xe [00 2 933 12,67	1] 1 438 13,06	paran 1 428 13,36	nètre c _o 2 848 13,83	<i>10,13</i> 3 1272 14,40	-6 ^{10,2} 4 1782 14,59	⁷ Å 5 2350 15,00	å	
Di 0 H d Di 0	agramı agramı	Diag me 98 5 3373 12,26 me 127	4 2218 12,47 4	a 3 1492 12,59 3	▶ 2 933 12,67 2	1] 1 438 13,06	paran 1 428 13,36 1	nètre c _o 2 848 13,83 2	<i>10,13</i> 3 1272 14,40 3	-fi ^{10,2} 4 1782 14,59 4	⁷ Å 5 2350 15,00	Å	
Di 0 H d Di 0 H	agramı agramı	Diag ne 98 5 3373 12,26 ne 127	4 2218 12,47 4 1945	a 3 1492 12,59 3 1350	xe [00 2 933 12,67 2 854	1] 1 438 13,06 1 415	paran 1 428 13,36 1 415	nètre c _o 2 848 13,83 2 854	<i>10,13</i> 3 1272 14,40 3 1328	-fi ^{10,2} 4 1782 14,59 4 1902	⁷ Å 5 2350 15,00	Å	
Di 0 H d Di 0 H d	agramı agramı	Diag me 98 5 3373 12,26 me 127	4 2218 12,47 4 1945 13,67	a 3 1492 12,59 3 1350 13,68	xe [00 2 933 12,67 2 854 13,74	1] 1 438 13,06 1 415 13,77	paran 1 428 13,36 1 415 13,77	nètre c _o 2 848 13,83 2 854 13,74	<i>10,13</i> 3 1272 14,40 3 1328 13,87	-f ^{10,2} 4 1782 14,59 4 1902 13,89	⁷ Å 5 2350 15,00 Å	Å	
Di 0 H d Di 0 H d Di	agramı agramı	Diag ne 98 5 3373 12,26 ne 127 ne 129	4 2218 12,47 4 1945 13,67	a 3 1492 12,59 3 1350 13,68	xe [00 2 933 12,67 2 854 13,74	1] 1 438 13,06 1 415 13,77	paran 1 428 13,36 1 415 13,77	nètre c _o 2 848 13,83 2 854 13,74	<i>10,13</i> 3 1272 14,40 3 1328 13,87	-f ^{10,2} 4 1782 14,59 4 1902 13,89	⁷ Å 5 2350 15,00 Å	Å	
Di 0 H d Di d Di	agramı agramı agramı	Diag ne 98 5 3373 12,26 ne 127 ne 129 5	4 2218 12,47 4 1945 13,67	a 3 1492 12,59 3 1350 13,68	<pre>xe [00 2 933 12,67 2 854 13,74 2</pre>	1] 1 438 13,06 1 415 13,77	paran 1 428 13,36 1 415 13,77	nètre c _o 2 848 13,83 2 854 13,74	<i>10,13</i> 3 1272 14,40 3 1328 13,87	-f ^{10,2} 4 1782 14,59 4 1902 13,89	⁷ Å 5 2350 15,00 Å	Å	
Di 0 H d Di d Di d Di 0 H d H H	agramı agramı agramı 6 3877	Diag ne 98 5 3373 12,26 ne 127 ne 129 5 2680	4 2218 12,47 4 1945 13,67 4 1920	a 3 1492 12,59 3 1350 13,68 3 1343	<pre>xe [00 2 933 12,67 2 854 13,74 2 856</pre>	1] 1 438 13,06 1 415 13,77 1 409	paran 1 428 13,36 1 415 13,77 1 419	nètre c _o 2 848 13,83 2 854 13,74 2 845	<i>10,13</i> 3 1272 14,40 3 1328 13,87 3 1334	-f ^{10,2} 4 1782 14,59 4 1902 13,89 4 1898	⁷ Å 5 2350 15,00 Å 5 2662	گ 6 3833	
Di 0 H d Di d Di 0 H d H d	agramı agramı 6 3877 13.85	Diag ne 98 5 3373 12,26 ne 127 ne 129 5 2689 13.81	4 2218 12,47 4 1945 13,67 4 1920 13.80	a 3 1492 12,59 3 1350 13,68 3 1343 13.74	xe [00 2 933 12,67 2 854 13,74 2 856 13.71	1] 1 438 13,06 1 415 13,77 1 409 13.97	paran 1 428 13,36 1 415 13,77 1 412 13.86	nètre c _o 2 848 13,83 2 854 13,74 2 845 13,88	<i>10,13</i> 3 1272 14,40 3 1328 13,87 3 1334 13,82	-f ^{10,2} 4 1782 14,59 4 1902 13,89 4 1898 13,91	⁷ Å 5 2350 15,00 Å 5 2662 13,89	Å 6 3833 13,91	Å

Diagramme 135

0	6	5	4	3	2	1	1	2	3	4	5	6	
\mathbf{H}	3864	2663	1901	1338	858	422	412	842	1321	1889	2634	3818	
d	13,87	13,89	13,90	13,79	13,68	13,54	13,86	13,92	13,94	13,96	13,98	13,94	Å

Dispersion des valeurs extrêmes trouvées pour c_0

Diagramme 98	·	12,26	<i>15,00</i> Å
Diagramme 127	_ 	13,67 B	<i>13,89</i> Å
Diagramme 129	· 	13,71 E	<i>13,97</i> o A
Diagramme 135		13,54	13,98 °

Hexachlorocyclohexane δ

axe [100] paramètre a₀

Di	agramı	me 339			5								
0	6	`5	4	3	2	1	1	2	3	4	5	6	
\mathbf{H}	3883	2691	1919	1339	851	412	407	833	1304	1867	2583	3656	
d	13,84	13,81	13,80	13,78	13,78	13,86	14,03	14,06	14,09	14,09	14,14	14,19	Å

Dispersion des valeurs extrêmes trouvées pour a₀

Diagram	me 339	 	3		- <u></u>		13,78	-= ^{14,19}	ΥÅ
		8	xe [010	a [4	aramèti	re b _o			
Diagramme 3	18		_			v			
0		4	3	2	1	1	2	3	
\mathbf{H}		4822	2539	1450	672	660	1398	2400	
d		8,55	8,57	8,59	8,62	8,76	8,86	8,88 Å	
Diagramme 3	30								
0	4	3	2	1	1	2	3	4	
\mathbf{H}	4413	2439	1421	663	669	1443	2507	4746	
d	8,80	8,79	8,74	8,73	8,65	8,62	8,64	8,60 Å	
	Disp	ersion o	le s vale	urs.extr	êmes tr	ouvées	pour b _o	u (
I	Diagram	me 318	۰ ۱			8,55	- = ^{8,88}	Å	

Diagramme 330

8,60

^{8,80} Å

				t	axe [00]	I]]	paramèt	re c _o			
$\mathbf{D}_{\mathbf{i}}$	agramı	ne 3	36							_	a.
		0 TT	8	7	6	5	4	3	2	1	n T
		H	4385	227		1855	1389	1004	652 17 74	322	2
		a	17,04	85	17,08	17,00	17,01	17,70	17,74	17,08 /	7
		0	1	2	3	4	5	6	7	8	
		H	318	652	1006	1392	1848	2385		4228	0
		d	17,90	17,74	17,72	17,70	17,74	17,83		17,87 1	A.
Diagramme 337											
		0	8	7	6	5	4	3	2	1	
		\mathbf{H}	4568	3270	2466	1899	1422	1016	659	320	_
		d	17,40	17,42	17,46	17,39	17,46	17,56	17,56	17,79	Ĭ
		0	I	2	3	4	5	6	7	8	
		\mathbf{H}	318	650	1003	1396	1834	2359	3072	4067	
		d	17,90	17,79	17,77	17,74	17,84	17,96	17,97	18,13	L
			Dier	orgion	dog vol	NIME ANT	rômos ti	PONTE	DO117 6		
	Dispersion des valeurs extremes trouvees pour c_0										
Diag	gramme	e 330	6 ⊣							17,53	∃ ^{17,90} Å
Diag	Diagramme 337										
				Ηe	xachl	orocyc	lohexa	ιne δ _H			
				ŧ	axe [100)] I	paramèt	re a _o			
Di	agramr	ne 3	46								
0	5		4	3	2	1	1	2	3	4	5
H	2549	1	836 1	279	819	398	396	818	1270	1814	2514
d	14,26	14	4,26 1	4,33	14,29	14,34	14,42	14,30	14,42	14,39	14,38 Å
			\mathbf{Disp}	persion	des vale	urs ext	rêmes ti	rouvées	pour a _o		
									14.26	14	42 °
	Diagr	amn	ne 346	}					,,		A
				ลง	се [120]	ุกร	ramètre	a. 1/3			
Dia	agramr	ne 3	48		IO [I=0]	P					
0	10		9	8	7	6	5	4	3	2	Ì
н	3207	20	645 2	2201	1824	1499	1212	941	692	455	221
d	25,13	25	5,10 2	5,07	25,08	25,08	25,02	25,12	25,14	25,16	25,69 Å
0	1		2	3	4	5	6	7	8	9	10
\mathbf{H}	238	4	65	710	963	1234	1531	1868	2263	2747	3351
12											

	Dispersion des valeurs extremes trouvees pour $a_0 \neq 5$										
Diagramme 348				<u> </u>			ź	3,87	3 ^{25,69} .	Å	
Dia	gramme	e 353		axe [00	01]	paran	nètre c _o				
0	5	4	3	2	1	1	2	· 3	4	5	
H d	3581 11,93	2357 11,98	1595 11,93	993 11,96	481 11,91	Å					

Dispersion des valeurs extrêmes trouvées pour $a_0 \sqrt{3}$

Dispersion des valeurs extrêmes trouvées pour co

Diagramme 353 ______ 11,91 11,98 Å

La valeur moyenne que nous admettrons comme valeur de paramètre a été établie graphiquement en reportant les unes sous les autres les extrémités des lignes qui schématisent les ensembles de valeurs obtenues pour ce paramètre. Les segments délimitant la dispersion des valeurs trouvées portent une marque qui correspond à la moyenne des valeurs du paramètre pour le diagramme considéré. Ces moyennes doivent être très voisines les unes des autres. Comme valeur que nous admettons pour chaque paramètre nous prenons alors un nombre compris entre les valeurs extrêmes de ces moyennes et tel qu'en donnant une prépondérance aux valeurs moyennes placées sur les segments de faible longueur, compte soit tenu du décentrage.

126

En résumé, les valeurs des paramètres le long des axes cristallographiques choisis sont :

	$\mathbf{a_0}$	b _o	$\mathbf{c_0}$
Isomère α	$12,9 \pm 0,3$ Å	$12,8\pm0,3$ Å	$6,6_5\pm0,1_5~\text{\AA}$
Isomère β	$10,1 \pm 0,3$		
Isomère γ	$15,2 \pm 0,3$	$10,2\pm0,1$	$13,8 \pm 0,3$
Isomère δ	$13,9 \pm 0,2$	$8,7 \pm 0,2_{5}$	$17,7 \pm 0,3$
Isomère δ _H	$14,3_5\pm0,1$	175 - 681 - -)	$11,9_5 \pm 0,0_5$

Connaissant ces paramètres et les angles entre les axes qui les portent nous pouvons maintenant calculer le volume de la maille spatiale qu'ils enferment.

Pour les isomères monocliniques ce volume est exprimé par le produit $a_0 \cdot b_0 \cdot c_0 \cdot \sin \beta$, pour l'isomère cubique par a_0^3 et pour δ_H par $a_0 \cdot \sqrt{3} \cdot c_0$. La valeur de ces volumes est:

Isomère α	1027 Å ³
Isomère β	1030
Isomère γ	2020
Isomère δ	2052
Isomère $\delta_{\mathbf{H}}$	2107

Détermination de la densité des isomères et calcul du nombre Z

La densité des cinq isomères a été déterminée en immergeant des fragments de cristaux dans une solution dont la densité était alternativement modifiée par dilution et par concentration jusqu'à ce qu'elle garde en suspension, c'est-à-dire sans mouvement d'ascension ou de chute, les fragments de cristaux les plus lourds.

Une partie de la solution était alors introduite dans un pycnomètre de 10 cc. de capacité, et sa densité déterminée par comparaison entre son poids et le poids du même volume d'eau distillée.

La solution utilisée était une solution de chlorure de zinc d'une concentration voisine de la saturation; sa densité à 17,5° C était légèrement supérieure à 2. La manipulation de cette solution est assez fastidieuse: la dilution étant accompagnée d'un fort dégagement de chaleur, nous étions obligés de refroidir continuellement la solution pour pouvoir effectuer toutes nos mesures à une température constante.

Les densités ainsi mesurées, à 17.5° C, rapportées à l'eau distillée à 17.5° C, ont les valeurs suivantes:

Isomère α	1,86
Isomère β	1,89
Isomère γ	1,85
Isomère δ	1,85
Isomère $\delta_{\mathbf{H}}$	1,85

Connaissant la densité de nos isomères et le volume de la maille que nous considérerons provisoirement comme élémentaire, nous déterminons le nombre de molécules contenues dans la maille par la formule

$$Z = \frac{d \cdot 6,06 \cdot 10^{23} \cdot V \cdot 10^{-24}}{P_m}$$

où d est la densité de l'isomère,

6,06.10²³ le nombre d'Avogadro,

V le volume de la maille élémentaire exprimé en Å³,

P_m le poids moléculaire de l'hexachlorocyclohexane, soit 290,8.

Le calcul nous donne les valeurs suivantes pour le nombre de molécules contenues dans la maille élémentaire:

Isomère α	3,98
Isomère β	4,06
Isomère γ	7,79
Isomère δ	7,91
Isomère δ _π	8,17

Le nombre de molécules contenues dans la maille élémentaire étant un nombre entier, ces nombres sont effectivement

Isomère α	4
Isomère β	4
Isomère γ	8
Isomère δ	8
Isomère $\delta_{\mathbf{H}}$	8

La différence entre ces nombres et les nombres trouvés par le calcul est faible; cette différence, exprimée en % de la valeur effective, varie entre 2,5% dans le cas le plus défavorable et 0,5% dans le cas le plus favorable; elle est une mesure de l'erreur totale que nous avons commise dans les déterminations dont nous avons parlé jusqu'à présent.

9 Schweiz. Min. Petr. Mitt., Bd. 32, Heft 1, 1952

129

Essai de réduction de la maille des isomères monocliniques

La symétrie monoclinique, révélée par les mesures goniomètriques et confirmée par des diagrammes de Laue, détermine d'une façon définitive la direction de l'axe [010]. Le paramètre atomique correspondant b_0 , déduit des mesures sur diagrammes tournants, est une dimension de la cellule élémentaire pour laquelle il n'y a pas d'ambiguïté. Il n'en est pas de même pour les paramètres a et c que nous avons pris dans le plan (010) en nous basant sur le développement remarquable de deux faces choisies comme faces (100) et (001). En effet il faut que ce couple de translations, dont le choix ne nous est imposé par aucune condition de symétrie, englobe tous les atomes contenus dans le plan (010). Or rien ne prouve que ce soit réellement le cas pour ces deux directions morphologiquement remarquables.

Nous allons donc, en nous basant sur ce que nous connaissons du réseau monoclinique, examiner quelles sont les possibilités laissées à un certain nombre d'atomes de se loger en des points échappant au contrôle des translations considérées provisoirement comme élémentaires.

La cellule élémentaire doit contenir un nombre entier de molécules. Les cellules trouvées en contiennent 4 ou 8. Si la cellule élémentaire vraie est plus petite, le nombre de molécules qu'elle contiendra sera un sousmultiple de ces nombres.

Si effectivement la cellule élémentaire vraie contient 2,4 ou 8 fois moins d'atomes que la cellule trouvée, cela signifie qu'en plus des 8 atomes occupant les sommets, cette dernière doit en contenir encore 1,3 ou 7 autres; ces atomes doivent occuper des positions telles que le réseau de translation trouvé puisse se superposer à ce nouveau réseau qui est 2,4 ou 8 fois plus dense et qui doit satisfaire à la symétrie monoclinique.

Nous avons examiné toutes les possibilités de réduction qui, sans modifier la symétrie monoclinique trouvée, peuvent être réalisées en introduisant 1,3 ou 7 nouveaux atomes dans la cellule trouvée.

Nous schématisons ci-dessous ces possibilités par une série de perspectives cavalières. Nous désignerons ces possibilités par un chiffre romain suivi d'une minuscule latine affectée ou non d'un indice. Les chiffres romains I, II et III désignent respectivement les cas de réduction par introduction de 1, 3 et 7 atomes supplémentaires; les minuscules latines désignent les diverses possibilités d'arrangement de ces atomes; quant aux indices 1 et 2, ils indiquent deux variantes par inversion de la disposition des atomes par rapport aux diagonales de la face (010). Chacune des possibilités indiquées entraîne des conditions de réflexion que nous avons établies en calculant le facteur d'amplitude correspondant.

 $\langle 000 \rangle \langle 0\frac{1}{22} \rangle$ A = 1 + cos π (k + l) (k + l) impair

 $\langle 000 \rangle \langle \frac{1}{2} \frac{1}{2} 0 \rangle \langle \frac{1}{2} 0 \frac{1}{2} \rangle \langle 0 \frac{1}{2} \frac{1}{2} \rangle$ A = l + cos π (h + k) + cos π (k + l) + cos π (l + h) deux indices d'une parité, le troisième indice de l'autre parité

132

Id

$\langle 000 \rangle \left< \frac{1}{2}0 \frac{1}{2} \right> \left< \frac{1}{4} \frac{1}{2} \frac{3}{4} \right> \left< \frac{3}{4} \frac{1}{2} \frac{1}{4} \right>$	
$\mathbf{A} = 1 + \cos \pi (\mathbf{h} + \mathbf{l}) \left[1 + 2\cos \frac{\pi}{2} (\mathbf{l} - \mathbf{h}) \cos \pi \mathbf{k} \right]$	
1° (h-l) impair	
2 [°] (h-1) multiple impair de 2 avec k pair	
3° (h - 1) multiple de 4 avec k impair	

IIc₁

 $\begin{array}{l} \langle 000 \rangle \ \left\langle \frac{1}{2}0\frac{1}{2} \right\rangle \ \left\langle \frac{3}{4}\frac{1}{2}\frac{3}{4} \right\rangle \ \frac{1}{4}\frac{1}{2}\frac{1}{4} \rangle \\ A = 1 + \cos \pi \ (h+l) \left[1 + 2\cos \frac{\pi}{2} \ (l+h) \cos \pi k \right] \\ I^{0} \ (h+l) \ impair \\ 2^{0} \ (h+l) \ multiple \ impair \ de \ 2 \ avec \ k \ pair \\ 3^{0} \ (h+l) \ multiple \ de \ 4 \ avec \ k \ impair \end{array}$

 3° (h-1) multiple impair de 4

 $\begin{array}{l} \langle 000\rangle \ \langle \frac{1}{8}0\frac{1}{8}\rangle \ \langle \frac{1}{4}0\frac{1}{4}\rangle \ \langle \frac{3}{8}0\frac{3}{8}\rangle \ \langle \frac{1}{2}0\frac{1}{2}\rangle \ \langle \frac{5}{8}0\frac{5}{8}\rangle \ \langle \frac{3}{4}0\frac{3}{4}\rangle \ \langle \frac{7}{8}0\frac{7}{8}\rangle \\ \mathrm{A} = 1 + \cos \pi \ (\mathrm{h} + \mathrm{l}) \\ \left[1 + 2\cos \frac{\pi}{2} \ (\mathrm{h} + \mathrm{l}) \left[1 + 2\cos \frac{\pi}{2} \ (\mathrm{h} + \mathrm{l})\right]\right] \\ \mathrm{I}^{0} \ (\mathrm{h} + \mathrm{l}) \ \mathrm{impair} \\ \mathrm{2}^{0} \ (\mathrm{h} + \mathrm{l}) \ \mathrm{multiple} \ \mathrm{impair} \ \mathrm{de} \ 2 \\ \mathrm{3}^{0} \ (\mathrm{h} + \mathrm{l}) \ \mathrm{multiple} \ \mathrm{impair} \ \mathrm{de} \ 4 \end{array}$

IIIb₁

- $\begin{array}{l} \langle 000\rangle \ \langle \frac{7}{8}0\frac{5}{8}\rangle \ \langle \frac{3}{4}0\frac{1}{4}\rangle \ \langle \frac{5}{8}0\frac{7}{8}\rangle \ \langle \frac{1}{2}0\frac{1}{2}\rangle \ \langle \frac{3}{8}0\frac{1}{8}\rangle \ \langle \frac{1}{4}0\frac{3}{4}\rangle \ \langle \frac{1}{8}0\frac{3}{8}\rangle \\ \mathrm{A}=1+\cos\pi\,(\mathrm{h}+1)\\ \left[1+2\cos\frac{\pi}{2}\,(\mathrm{h}-1)+4\cos\frac{\pi}{2}\,(\mathrm{h}+1)\cos\frac{\pi}{4}\,(\mathrm{h}-1)\right]\\ 1^{0}\ (\mathrm{h}+1)\ \mathrm{impair}\\ 2^{0}\ (\mathrm{h}-1)\ \mathrm{multiple\ impair\ de\ 2} \end{array}$
- 3° (h+1) multiple impair de 2, (h-1) multiple de 8
- 4° (h+l) multiple de 4, (h-l) multiple impair de 4

$$\langle 000 \rangle \left\langle \frac{7}{8} \frac{3}{8} \right\rangle \left\langle \frac{3}{4} 0 \frac{3}{4} \right\rangle \left\langle \frac{5}{8} 0 \frac{1}{8} \right\rangle \left\langle \frac{1}{2} 0 \frac{1}{2} \right\rangle \left\langle \frac{3}{8} 0 \frac{7}{8} \right\rangle \left\langle \frac{1}{4} 0 \frac{1}{4} \right\rangle \left\langle \frac{1}{8} 0 \frac{5}{8} \right\rangle$$

$$A = 1 + \cos \pi (h+1)$$

$$\left[1 + 2 \cos \frac{\pi}{2} (h+1) + 4 \cos \frac{\pi}{2} (h-1) \cos \frac{\pi}{4} (h+1) \right]$$

$$1^{\circ} (h+1) \text{ impair}$$

$$2^{\circ} (h+1) \text{ multiple impair de } 2$$

$$3^{\circ} (h-1) \text{ multiple impair de } 2$$

- ⁶ (h-1) multiple impair de 2, (h+1) multiple de 8
- 4° (h-l) multiple de 4, (h+l) multiple impair de 4

- $\begin{array}{l} \langle 000 \rangle \ \langle \frac{3}{4}0\frac{1}{4} \rangle \ \langle \frac{1}{2}0\frac{1}{2} \rangle \ \langle \frac{1}{4}0\frac{3}{4} \rangle \ \langle 0\frac{1}{2}\frac{1}{2} \rangle \ \langle \frac{1}{2}\frac{1}{2}0 \rangle \ \langle \frac{3}{4}\frac{1}{2}\frac{3}{4} \rangle \ \langle \frac{1}{4}\frac{1}{2}\frac{1}{4} \rangle \\ \mathrm{A} = 1 + \cos \pi \, (\mathrm{h} + \mathrm{l}) \left[1 + 2\cos \frac{\pi}{2} \, (\mathrm{h} \mathrm{l}) \right] \\ + 2\cos \frac{\pi}{2} \, (\mathrm{h} + \mathrm{l}) \left[\cos \frac{\pi}{2} \, (\mathrm{h} \mathrm{l}) + \cos \pi \, (\mathrm{h} + \mathrm{l}) \right] \cos \pi \, \mathrm{k} \\ \mathrm{I}^{0} \ (\mathrm{h} + \mathrm{l}) \ \mathrm{impair} \\ \mathrm{2}^{0} \ (\mathrm{h} \mathrm{l}) \ \mathrm{multiple\ impair\ de\ 2} \end{array}$
- 3° (h+1) multiple impair de 2, (h-1) multiple de 4, k pair
- 4° (h+l) multiple de 4, (h-l) multiple de 4, k impair '

 $\begin{array}{l} \langle 000\rangle \left< \frac{3}{4}0\frac{3}{4} \right> \left< \frac{1}{2}0\frac{1}{2} \right> \left< \frac{1}{4}0\frac{1}{4} \right> \left< 0\frac{1}{2}\frac{1}{2} \right> \left< \frac{1}{2}\frac{1}{2}0 \right> \left< \frac{3}{4}\frac{1}{2}\frac{1}{4} \right> \left< \frac{1}{4}\frac{1}{2}\frac{1}{4} \right> \\ A = 1 + \cos \pi (h+l) \left[1 + 2\cos \frac{\pi}{2} (h+l) \right] \\ + 2\cos \frac{\pi}{2} (h-l) \left[\cos \pi (h+l) + \cos \frac{\pi}{2} (h+l) \right] \\ + 2\cos \frac{\pi}{2} (h-l) \left[\cos \pi (h+l) + \cos \frac{\pi}{2} (h+l) \right] \\ \cos \pi k \\ 1^{0} (h+l) \text{ impair} \\ 2^{0} (h+l) \text{ impair} \\ 2^{0} (h+l) \text{ multiple impair de 2} \\ 3^{0} (h-l) \text{ multiple impair de 2}, (h+l) \text{ multiple} \\ & \text{de 4, } k \text{ pair} \\ 4^{0} (h-l) \text{ multiple de 4, } (h+l) \text{ multiple de 4, } \\ & \text{k impair} \end{array}$

- $\langle 000\rangle\;\langle \frac{3}{4}0\frac{3}{4}\rangle\;\langle \frac{1}{2}0\frac{1}{2}\rangle\;\langle \frac{1}{4}0\frac{1}{4}\rangle\;\langle \frac{7}{8}\frac{1}{2}\frac{7}{8}\rangle\;\langle \frac{5}{8}\frac{1}{2}\frac{5}{8}\rangle\;\langle \frac{3}{8}\frac{1}{2}\frac{3}{8}\rangle\;\langle \frac{1}{8}\frac{1}{2}\frac{1}{8}\rangle$ $A = 1 + \cos \pi (h+l)$ $\left[1+2\cos\frac{\pi}{2}\left(h+l\right)\left[1+2\cos\frac{\pi}{4}\left(h+l\right)\cos\pi k\right]\right]$ 1° (h+l) impair 2º (h+l) multiple impair de 2 3º (h+l) multiple impair de 4, k pair
- 4º (h+l) multiple de 8, k impair

- $\langle 000\rangle \ \langle \frac{3}{4}0\frac{1}{4}\rangle \ \langle \frac{1}{2}0\frac{1}{2}\rangle \ \langle \frac{1}{4}0\frac{3}{4}\rangle \ \langle \frac{7}{8}\frac{1}{2}\frac{5}{8}\rangle \ \langle \frac{5}{8}\frac{1}{2}\frac{7}{8}\rangle \ \langle \frac{3}{8}\frac{1}{2}\frac{1}{8}\rangle \ \langle \frac{1}{8}\frac{1}{2}\frac{3}{8}\rangle \ \langle \frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{3}{8}\rangle \ \langle \frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\rangle \ \langle \frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\rangle \ \langle \frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\frac{1}{8}\rangle \ \langle \frac{1}{8}\frac$ $A = 1 + \cos \pi (h+l) \left[1 + 2\cos \frac{\pi}{2} (h-l) + \right]$ $4\cos\frac{\pi}{2}(h+1)\cos\frac{\pi}{4}(h-1)\cos\pi k$ 1° (h+l) impair
- 2° (h-1) multiple impair de 2
- 3° (h+1) multiple impair de 2, (h-1) multiple impair de 4, k impair
- 4° (h+1) multiple impair de 2, (h-1) multiple de 8, k pair
- 5^{0} (h+l) multiple de 4, (h-l) multiple de 8, k impair

136

IIId₂

Nous donnons en regard de chaque schéma d'arrangement:

- 1^o les coordonnées des points occupés par le centre de gravité des atomes;
- 2⁰ le facteur d'amplitude correspondant;
- 3^o les conditions de suppression de réflexions entraînées par l'arrangement considéré.

Ayant examiné les diverses possibilités de réduction de la cellule monoclinique par introduction de 1, 3 ou 7 atomes supplémentaires dans la maille, et connaissant les conditions de suppression de réflexions liées à chacune de ces possibilités, nous avons examiné si nos isomères ne réalisaient pas un de ces cas. Pour cela nous avons fait appel aux diagrammes de Laue déjà utilisés pour contrôler nos diagnostics de symétrie.

Nous avons basé le rejet d'une hypothèse de réduction sur la présence de taches et non sur leur absence. L'absence d'une réflexion peut bien, en effet, résulter d'une certaine disposition des atomes identiques (et c'est ce que nous recherchons), mais aussi d'une disposition particulière de tout l'ensemble des atomes, ou encore, de l'intensité trop faible de la radiation apte à donner la réflexion. L'absence d'une tache n'est donc pas un critère suffisant. En revanche, la présence d'une tache qui ne devrait pas être présente pour un groupement d'atomes déterminé, est un critère certain pour écarter l'hypothèse de l'existence de ce groupement.

Nous avons enregistré nos diagrammes de Laue à l'aide de la caméra qui nous a déjà servi pour l'enregistrement des diagrammes de cristal tournant. Nous ne reviendrons donc pas sur les particularités qui influencent le centrage.

Les diagrammes furent effectués avec les radiations émises par des ampoules de rayons X à anticathodes de cobalt et de molybdène, fonctionnant sous des tensions de 30, 35 et 50 kV. Le film plan, sur lequel le diagramme était enregistré, se trouvait à 56 millimètres du centre du eristal. Les positions relatives du cristal et du film, parfaitement repérées, et la connaissance de la valeur des paramètres atomiques le long des axes cristallographiques permettaient le déchiffrement de ces diagrammes. A cet effet, on a transformé les diagrammes de Laue en projections gnomoniques, et l'on a identifié les taches en comparant le diagramme transformé à des projections gnomoniques théoriques établies d'avance. Pour la commodité de la représentation, toutes les projections gnomoniques ont été faites sur des plans parallèles au film et passant par le milieu de la distance séparant le film du centre cristal.

Nous donnons ci-dessous, sous forme d'épures géométriques, les principes de la construction des projections gnomoniques théoriques. Nous avons établi graphiquement quelques unes de ces projections; par la suite, afin d'augmenter la précision, nous avons préféré fixer la place des points fondamentaux par le calcul de leur distance au centre de la projection. La place d'un certain nombre de points supplémentaires a été déterminée par l'intersection de droites de zone.

Construction de la projection sur (100)

d = distance de la projection gnomonique du pôle de la normale à la face (h0l) au centre de la projection

- a et c = paramètres atomiques sur les axes x et z
- h et l = indices de Miller de la face

 $\boxed{\bigcirc} = 90^{\circ}$

 $d = 28 \text{ tg } \Phi \cdot 1 \text{ mm}$

$$tg\Phi = \frac{AK}{CK} = \frac{la \cdot \cos\beta'}{hc + la \cdot \sin\beta'}$$

$$d = 28 \frac{la \cdot \cos \beta'}{hc + la \cdot \sin \beta'} \cdot 1 mm$$

Faces (h0l) h et l de signes contraires.

AB = Plan (hk0) sur plan perpendiculaire à [001] OA = Axe des x projeté sur le même planON = Normale au plan AB

$$d = 28 \frac{\mathrm{ka} \cdot \cos \beta'}{\mathrm{hb}} \cdot 1 \mathrm{mm}$$

140

Faces (0kl): Puisque les axes des x et des z sont interchangeables dans le système monoclinique, la formule établie pour les faces (hk0) s'applique aux faces (0kl) en changeant h et a en l et c; ainsi on a:

$$d = 28 \frac{kc \cdot \cos \beta'}{lb} \cdot 1 mm$$

Construction de la projection sur (001)

Pour les raisons que nous venons d'invoquer, les formules établies pour la projection sur (100) s'appliqueront à la projection sur (001) en intervertissant $h \cdot c$ et $l \cdot a$.

Construction de la projection sur (010)

Faces (0kl): La formule est analogue; il suffit de changer h et a en l et c, ce qui donne

$$d = 28 \frac{lb}{kc \cdot \cos \beta'} \cdot 1 mm$$

Nous avions enregistré chaque diagramme à double, et nous n'avons retenu que les réflexions présentes sur les deux films d'une même paire.

Nous donnons ci-après la liste de ces faces groupées par isomères et assemblées conformément à leur appartenance aux diverses paires de films.

					lsom	$\dot{\mathbf{e}}\mathbf{re} \ \boldsymbol{\alpha}$	1				
Di	agram	mes			Diagr	ammes			D	iagram	\mathbf{mes}
1.	55 et 1	160			157	et 164]	159 et]	63
011	$32\overline{2}$	$72\overline{3}$	•	$05\overline{1}$	$\overline{2}6\overline{1}$	$47\overline{2}$	$\overline{8}10\overline{1}$	2°	$00\overline{1}$	$14\overline{3}$	$\overline{3}42$
023	$32\overline{5}$	732		$06\overline{1}$	$27\overline{1}$	$\overline{4}8\overline{1}$	$\overline{9}21$		011	$\overline{1}4\overline{4}$	$\overline{3}51$
034	410	$74\overline{5}$		$07\overline{1}$	$\overline{2}10\overline{1}$	$410\overline{3}$	$\overline{9}50$		$01\overline{5}$	$14\overline{5}$	$\overline{3}52$
035	411	$82\overline{1}$		$08\overline{1}$	$31\overline{1}$	$411\overline{3}$	$99\overline{4}$		$02\overline{1}$	$\overline{1}50$	$\overline{3}61$
045	41 1	$83\overline{1}$		$09\overline{1}$	$\overline{3}20$	$412\overline{3}$	$100\overline{3}$		$03\overline{1}$	$\overline{1}5\overline{1}$	362
111	$41\overline{2}$	$83\overline{3}$		$011\overline{1}$	$32\overline{1}$	$52\overline{2}$	$104\overline{3}$		$04\overline{1}$	$\overline{1}5\overline{2}$	$\overline{3}82$
112	$41\overline{3}$	$83\overline{4}$		100	$33\overline{1}$	$54\overline{2}$	$115\overline{4}$		$04\overline{3}$	$\overline{1}5\overline{3}$	· <u>3</u> 91
$11\overline{2}$	421	$84\overline{3}$		110	$\overline{3}40$	$\overline{5}60$			$05\overline{1}$	$15\overline{4}$	$\overline{3}9\overline{1}$
125	433	863		$\overline{1}20$	$34\overline{1}$	$56\overline{2}$		4	$05\overline{3}$	$15\overline{5}$	$\overline{3}92$
134	$43\overline{4}$	921		$\overline{1}40$	$\overline{3}50$	$\overline{5}7\overline{1}$			ī 01	$\overline{1}6\overline{1}$	$\overline{3}10\overline{2}$
135	435	$92\overline{1}$		141	$35\overline{1}$	$58\overline{2}$			$10\overline{3}$	$\overline{1}6\overline{2}$	$\overline{3}11\overline{1}$
$\overline{1}35$	$43\overline{5}$	$92\overline{2}$		$15\overline{1}$	$36\overline{1}$	$\overline{5}9\overline{1}$			ī11	$16\overline{4}$	4 23
145	$44\overline{5}$	$94\overline{1}$		$16\overline{1}$	$\overline{3}6\overline{1}$	$510\overline{3}$			$11\overline{2}$	$\overline{1}7\overline{1}$	$\overline{4}43$
$\overline{1}45$	511	$94\overline{4}$		$17\overline{1}$	$\overline{3}7\overline{1}$	$511\overline{3}$			$11\overline{3}$	$17\overline{5}$	$\overline{4}63$
210	$51\overline{3}$	952		$\overline{1}7\overline{1}$	$37\overline{2}$	$67\overline{2}$			114	$\overline{1}8\overline{3}$	$\overline{4}81$
211	521	$95\overline{6}$		$18\overline{1}$	$38\overline{2}$	$67\overline{3}$			$11\overline{5}$	$\overline{1}9\overline{3}$	4 121
$21\overline{1}$	$52\overline{1}$	$104\overline{3}$		191	$\overline{3}9\overline{1}$	$72\overline{2}$			$\overline{1}1\overline{6}$	$\overline{2}21$	$\overline{5}24$
$21\overline{2}$	522	1150		$110\overline{1}$	$39\overline{2}$	$74\overline{2}$			$\overline{1}20$	$\overline{2}31$	$\overline{5}44$
213	531	$115\overline{2}$		$110\overline{2}$	$310\overline{2}$	$75\overline{2}$			$12\overline{2}$	$\overline{2}41$	$\overline{5}53$
$22\overline{3}$	$54\overline{6}$	$115\overline{4}$	-	$111\overline{2}$	$\overline{3}11\overline{1}$	$76\overline{3}$			$12\overline{3}$	$\overline{2}50$	$\overline{5}54$
233	611	$124\overline{3}$	1. C	$\overline{2}10$	$311\overline{2}$	$77\overline{3}$			$12\overline{4}$	$\overline{2}51$	$\overline{5}64$
235	$61\overline{3}$	$125\overline{2}$		$22\overline{1}$	$40\overline{1}$	$78\overline{3}$			ī 30	$\overline{2}61$	$\overline{5}82$
$23\overline{5}$	$62\overline{1}$			$\overline{2}30$	4 11	801			131	$\overline{2}6\overline{5}$	$\overline{6}121$
256	631			$23\overline{1}$	$42\overline{1}$	$80\overline{3}$			$13\overline{3}$	$\overline{2}7\overline{3}$	$\overline{7}45$
310	632			$24\overline{1}$	$\overline{4}30$	$84\overline{3}$			$13\overline{5}$	$\overline{2}10\overline{1}$	$\overline{7}54$
311	$63\overline{2}$			$\overline{2}50$	$43\overline{1}$	86 3			1 40	$\overline{2}11\overline{2}$	$\overline{7}74$
$31\overline{1}$	720			$25\overline{1}$	44 1	$87\overline{3}$			141	$\overline{3}22$	$\overline{8}55$
321	$72\overline{1}$		(C)	$26\overline{1}$	$45\overline{2}$	883			$\overline{142}$	332	

Isomère γ

Diagrai	mmes 88	8 et 119	Diagrammes 95 et 117
021	$13\overline{1}$	$43\overline{6}$	117 810
032	$\overline{1}35$	$47\overline{6}$	$\overline{1}1\overline{9}$ $\overline{8}1\overline{2}$
054	$14\overline{1}$	$52\overline{9}$	$\overline{2}1\overline{6}$ $\overline{8}18$
076	$\overline{1}57$	$53\overline{9}$	$\overline{3}17$ $\overline{9}1\overline{1}$
$10\overline{2}$	$\overline{1}59$	$54\overline{9}$	$\overline{3}2\overline{9}$ $\overline{9}1\overline{3}$
$\overline{1}04$	173	$55\overline{9}$	$\overline{4}110$ $\overline{10}14$
$\overline{1}06$	$23\overline{3}$	6310	$\overline{5}1\overline{7}$ $\overline{13}2\overline{1}$
$11\overline{2}$	270	$65\overline{10}$	$\overline{6}16$
114	$35\overline{5}$		$\overline{7}1\overline{3}$
$\overline{1}25$	$37\overline{3}$		$\overline{7}19$

142

Isomère δ

Dia	grammes	s 326 et	331	Diagrammes 327 et 332				
001	141	272	$63\overline{10}$	001	131	$\overline{2}3\overline{2}$	$\overline{5}7\overline{3}$	
012	143	274	$65\overline{10}$	011	135	238	$\overline{6}5\overline{2}$	
014	147	$30\overline{7}$		012	137	2310	$\overline{6}5\overline{4}$	
034	1411	$32\overline{5}$		014	139	2314	$\overline{10}7\overline{6}$	
$10\overline{2}$	151	$32\overline{7}$		021	1311	2316		
$10\overline{3}$	153	$33\overline{5}$		034	1313	$\overline{2}41$		
111	155	$33\overline{7}$		$\overline{1}0\overline{1}$	1 41	$\overline{2}50$		
113	159	$34\overline{5}$		103	147	$\overline{2}52$		
117	163	$34\overline{7}$	10 (14)	104	1413	$\overline{2}76$		
<u>1</u> 111	165	$36\overline{5}$		105	$\overline{1}53$	$\overline{2}910$		
120	167	$41\overline{6}$		106	159	$\overline{3}2\overline{2}$		
121	$20\overline{5}$	418		107	1511	$\overline{3}3\overline{1}$		
$12\overline{1}$	$21\overline{3}$	$41\overline{10}$		109	1513	$\overline{3}3\overline{2}$		
122	$21\overline{4}$	$43\overline{8}$		ĪlĪ	$\overline{1}65$	$\overline{3}40$		
$12\overline{2}$	$21\overline{6}$	$45\overline{2}$		113	167	$\overline{3}4\overline{1}$		
123	$22\overline{3}$	$45\overline{4}$		118	$\overline{1}75$	$\overline{3}5\overline{1}$		
125	$22\overline{5}$	$45\overline{6}$		119	$\overline{2}0\overline{3}$	$\overline{3}7\overline{1}$		
127	$23\overline{1}$	$45\overline{8}$		1113	$\overline{2}1\overline{2}$	$\overline{3}75$		
$\overline{1}27$	$23\overline{2}$	$47\overline{2}$		120	$\overline{2}1\overline{3}$	$\overline{3}85$		
1211	2314	$47\overline{4}$		$\overline{1}21$	216	$\overline{3}95$		
130	241	492		$\overline{1}2\overline{1}$	218	414		
131	$24\overline{1}$	$50\overline{9}$		124	2110	$\overline{4}1\overline{5}$		
132	250	$51\overline{9}$		125	2112	$\overline{4}1\overline{6}$		
133	251	$52\overline{9}$		127	2116	$\overline{4}50$		
135	254	$\mathbf{54\overline{9}}$		129	$\overline{2}2\overline{1}$	$\overline{4}5\overline{2}$		
137	256	$55\overline{9}$		1211	$\overline{2}31$	$\overline{4}72$		
139	258	$56\overline{9}$		1213	$\overline{2}3\overline{1}$	$\overline{4}92$		
1311	2514	$57\overline{9}$		ī 30	$\overline{2}32$	$\overline{5}6\overline{3}$		
	t.							
Diagra	mmes 32	28 et 335	5	Dia	igramme	es 329 e	t 334	
$0\overline{5}2$	$\overline{33}2$	$\overline{723}$		011	$\overline{2}56$	$\overline{4}56$	$\overline{7}311$	
111	$\overline{341}$	$7\overline{2}5$		021	274	$\overline{4}58$	749	
111	401	$\overline{73}3$		032	$\overline{2}78$	$50\overline{3}$	$75\overline{3}$	
$\overline{121}$	$\bar{4}01$	$7\overline{3}5$		043	$\overline{2}710$	$\overline{5}07$	$76\overline{1}$	
$1\overline{2}2$	$\overline{41}1$	$7\overline{4}5$		052	$\overline{3}04$	$\overline{5}08$	$81\overline{6}$	
$1\overline{3}1$	$4\overline{1}2$	$8\overline{1}2$		076	$\overline{3}05$	$\overline{5}09$	$\overline{8}114$	
$\frac{1}{131}$	$\overline{\overline{41}2}$	814		1 12	$31\overline{2}$	$\overline{5}19$	$83\overline{4}$	
141	432	832		120	$\overline{3}14$	$52\overline{2}$	$\overline{8}314$	
201	$\frac{10}{432}$	834		122	315	527	$85\overline{2}$	
201	452	834		123	$32\overline{2}$	$\overline{5}29$	$85\overline{4}$	
$2\overline{1}$	452	854		131	$\overline{3}24$	$53\overline{3}$	8514	
$\frac{1}{211}$	$\frac{10}{474}$	913		ī 33	$\overline{3}25$	$\overline{5}37$	$92\overline{5}$	
$\frac{21}{212}$	502	$\frac{1}{923}$		ī 34	335	$54\overline{3}$	935	
414	004	040				2		

Diagrammes 328 et 335			Diag	Diagrammes 329 et 334					
$2\overline{2}1$	511	1014	141	340	$55\overline{1}$	$97\overline{1}$			
$\overline{23}2$	$5\overline{1}3$	$\overline{10}\overline{1}4$	$\overline{1}43$	$34\overline{1}$	$\overline{5}59$	$101\overline{6}$			
$\overline{25}2$	$5\overline{2}1$	1016	151	$\overline{3}45$	$56\overline{1}$	10116			
$2\overline{5}4$	$\overline{52}1$	$\overline{10}\overline{3}4$	163	$\overline{3}46$	571	$105\overline{6}$			
$2\overline{7}4$	$\overline{52}2$	$\overline{10}\overline{5}6$	165	347	$\overline{5}79$	$112\overline{7}$			
301	$5\overline{2}3$	$\overline{11}\overline{2}5$	$\overline{1}65$	$35\overline{1}$	$61\overline{2}$	$113\overline{5}$			
$\overline{3}01$	$\overline{53}3$	$\overline{11}\overline{3}5.$	175	$\overline{3}57$	6 18	$113\overline{7}$			
311	$\overline{543}$	$\overline{11}\overline{5}5$	175	$\overline{3}67$	6310	$115\overline{5}$			
$3\overline{1}2$	$6\overline{1}2$	$\overline{14}\overline{1}6$	177	373	$65\overline{2}$	$133\overline{7}$			
$\overline{312}$	$\overline{61}2$		$\overline{2}03$	$\overline{3}77$	$\overline{6}510$	$135\overline{7}$			
$3\overline{2}1$	$6\overline{3}2$		$21\overline{1}$	$\overline{3}79$	692	$136\overline{5}$			
$\overline{321}$	$\overline{63}2$		$\overline{2}13$	$40\overline{3}$	$70\overline{3}$				
$3\overline{2}2$	$6\overline{3}4$		$\overline{2}23$	$41\overline{2}$	$71\overline{5}$				
$\overline{322}$	$\overline{63}4$		$\overline{2}34$	4 16	$72\overline{5}$				
$3\overline{2}3$	$6\overline{5}4$		$\overline{2}35$	$43\overline{2}$	$\overline{7}29$				
$3\overline{3}1$	$\overline{7}02$		$\overline{2}36$	$\overline{4}36$	$\overline{7}211$				
331	$\overline{7}03$		250	45 0	$73\overline{3}$				
$3\overline{3}2$	$7\overline{2}3$		$\overline{2}54$	$45\overline{2}$	$73\overline{5}$				

En connaissant les indices (hkl) de ces plans, la valeur des paramètres le long des axes cristallographiques et la valeur de l'angle compris entre les axes non rectangulaires, on a pu déterminer les longueurs d'onde λ des radiations qui ont fourni les taches correspondantes.

A cet effet on a reporté dans la formule de Bragg:

$$\mathbf{n}\lambda = 2\,\mathbf{d}\,\sin\theta$$

la valeur de l'espacement $d_{(khl)}$ entre les plans successifs (hkl) et la valeur de l'angle d'incidence θ . La valeur de l'espacement $d_{(hkl)}$ entre les plans successifs (hkl) est donné dans le système monoclinique par la formule:

$$d_{(hkl)} = \frac{1}{\sqrt{\frac{1}{\sin^2\beta} \left[\frac{h^2}{a^2} + \frac{l^2}{c^2} - \frac{2 \, hl \, \cos\beta}{ac}\right] + \frac{k^2}{b^2}}}$$

Quant à la valeur de l'angle d'incidence θ , elle est égale à la moitié de l'angle de déviation du rayon apparemment réfléchi que l'on tire directement des mesures sur le film.

Sachant que la valeur de la plus courte longueur d'onde présente dans le faisceau incident est donné par la formule:

$$\lambda_{\min} = \frac{12,35}{kV}$$

144

dans laquelle kV représente la tension appliquée aux bornes de l'ampoule, exprimée en kilovolts, nous avons pu constater qu'aucune des valeurs de λ trouvées n'est inférieure à la longueur d'onde λ_{\min} du faisceau incident. Par conséquent, il n'y a pas de contradiction entre les données expérimentales et les données cristallographiques admises jusqu'à présent.

Le calcul de ces longueurs d'onde a, de plus, mis en évidence un certain nombre de taches dues exclusivement à des réflexions apparentes du premier ordre. Parmi ces réflexions nous avons mis à part celles pour lesquelles la réflexion au premier ordre revêt un caractère de certitude absolue. Nous la tenons pour telle lorsque la génération de la longueur d'onde qui pourrait donner une réflexion au second ordre exigerait une surtension de 40%, qui ne se produit jamais dans le réseau sur lequel nous sommes branchés.

Face	Film				Hypot	hèses	de rédu	uction			
Face	T. IIIII	Ia	Ib	Ic	Id	IIa	IIb ₁	\mathbf{IIb}_{2}	IIc ₁	\mathbf{IIc}_{2}	
Isomère α											
801	157	×		×	×	×	×	×	×	×	
1 41	159		×		×	×	×		×		
Isomère γ						l i					
4110	95	×	×		×	×	×	×	×	×	a.
Isomère δ											
141	328		×		×	×	×		×		
$\overline{34}1$	328		×		×	×		×		×	
$8\overline{1}2$	328	×	×	~	×	×	×	×			
	. ,			6							
		$IIIa_1$	$IIIa_2$	$IIIb_1$	$IIIb_2$	$IIIc_1$	IIIc_{2}	$IIId_1$	IIId_2	$IIIe_1$	$IIIe_2$
Isomère y			2								
4110	95	×	×	×	×	×	×	×	×	×	×
Isomère δ				8	5						
141	328	×		\times	×	×	×	×		×	×
341	328	×	×	2	×	×	×	×	×		×
812	328	\times	×	×	×	X	×	×	×	×	×

Ce sont les réflexions ainsi sélectionnées qui nous serviront, après vérification très stricte de leur identité, à l'élimination des hypothèses de réduction de la maille élémentaire trouvée à une maille de dimensions inférieures. La vérification de l'identité s'est faite en examinant s'il ne pouvait y avoir dans le carré d'erreur des points représentatifs des faces

10 Schweiz. Min. Petr. Mitt., Bd. 32, Heft 1, 1952

correspondant à ces réflexions présence d'autres faces, capables de réfléchir une radiation du faisceau incident. Cet examen a montré que les réflexions apparentes possibles les plus proches de celles des faces que nous avions sélectionnées, se produiraient bien au-delà des carrés d'erreur correspondants. Par conséquent l'identité des faces retenues est parfaitement établie.

Nous donnons page 145 la liste de ces faces, groupées par isomère. En regard de chaque face nous notons par des croix les hypothèses de réduction qu'elles infirment, ces hypothèses de réduction étant désignées par les symboles que nous leur avons attribués plus haut.

L'examen de ce tableau d'élimination des hypothèses de réduction montre que la maille trouvée pour l'isomère α est bien la maille élémentaire. Pour les isomères γ et δ , la présence des faces notées écarte toutes les hypothèses, sauf l'hypothèse Ic. De toutes les autres faces ne réfléchissant qu'au premier ordre, aucune n'infirme cette hypothèse. On pourrait donc admettre, conformément à cette hypothèse, que la face (010) de la maille trouvée est une face centrée. Si tel est le cas, nous nous trouverions en présence d'une nouvelle maille monoclinique dont les axes exprimés en coordonnées de l'ancien système, auraient pour indices [101], [010] et [101] pour l'isomère γ , [101], [010] et [101] pour l'isomère δ .

L'angle entre les axes non rectangulaires et les paramètres atomiques définissant la maille construite sur ces nouveaux axes auraient respectivement les valeurs suivantes:

Isomère
$$\gamma: \beta = 95^{\circ} 3/4$$

 $a = 8,4 \text{ Å}$
 $b = 10,2 \text{ Å}$
 $c = 11,8 \text{ Å}$
Isomère $\delta: \beta = 104^{\circ} 1/4$
 $a = 9,6 \text{ Å}$
 $b = 8,7 \text{ Å}$
 $c = 12,7 \text{ Å}$

Les indices des plans apparemment réfléchissants, mis en évidence par déchiffrement des diagrammes de Laue, n'ont plus, par rapport aux nouveaux axes cristallographiques, les valeurs que nous avions déterminées plus haut. Les nouveaux indices s'obtiennent par la formule:

$$\begin{aligned} h' &= u_1 h + v_1 k + w_1 l \\ k' &= u_2 h + v_2 k + w_2 l \\ l' &= u_3 h + v_3 k + w_3 l \end{aligned}$$

dans laquelle h', k' et l' désignent les nouveaux indices d'un plan, $[u_1v_1w_1]$, $[u_2v_2w_2]$ et $[u_3v_3w_3]$ les indices des nouveaux axes dans l'ancien système de coordonnées, et h, k et l les indices du plan dans l'ancien système.

Si l'hypothèse Ic est exacte, nous nous trouvons en présence d'un nouvel angle, β , auquel sont liés de nouveaux paramètres atomiques et de nouveaux indices pour les plans réfléchissants. Avec ces données nous calculons la distance d entre les plans équivalents donnant des réflexions apparentes. En reportant ces valeurs de d dans la formule de Bragg, nous ne pouvons trouver pour les longueurs d'onde réfléchies que des valeurs supérieures à la plus petite longueur d'onde contenue dans le faisceau incident. Or le calcul nous donne précisément pour un certain nombre de taches présentes sur nos diagrammes des longueurs d'onde inférieures à la longueur d'onde minima contenue dans le faisceau incident, et cela même si l'on admettait une surtension de 40%. Les faces correspondant à ces taches sont:

	film	anciens indices	nouveaux indices	$\lambda \text{ correspon-} \\ \text{dante}$	λ_{\min} du fais- ceau incident
Isomère γ	95	$\overline{5}1\overline{7}$	$\overline{12}1\overline{2}$.	0,167 Å	0,247 Å
	95	$\overline{9}1\overline{3}$	$\overline{12}16$	0,160 Å	0,247 Å
Isomère δ	327	$\overline{4}1\overline{6}$	$\overline{10}\overline{1}2$	0,231 Å	0,353 Å
	328	$8\overline{1}2$	1016	0,243 Å	0,353 Å
	329	$81\overline{6}$	$2\overline{1}14$	0,241 Å	0,353 Å

Le contrôle de l'identité de ces faces a montré qu'il n'y a pas, pour l'isomère δ , de face d'indices plus simples dont la projection tomberait dans leur carré d'erreur. Pour l'isomère γ , les faces ($\overline{12}1\overline{1}$) d'une part, ($\overline{12}15$) d'autre part, se projetteraient en bordure des carrés d'erreur des faces ($\overline{12}1\overline{2}$) et ($\overline{12}16$). Ces indices plus simples correspondraient à des faces réfléchissant des radiations dont la longueur d'onde serait plus grande que celle réfléchie par les faces que nous avons admises; mais même la présence de ces radiations exigerait, d'après le calcul, une surtension de plus de 40%.

Nous en concluons que l'hypothèse de réduction I c doit être rejetée, et que pour les isomères γ et δ la maille élémentaire est également celle que nous avons déterminée.

Détermination du groupe spatial

La détermination du groupe spatial auquel appartiennent les isomères α , γ et δ s'est faite par observation des taches présentes sur les diagrammes de Laue et sur des diagrammes de Schiebold-Sauter.

Les diagrammes de Laue sont ceux que nous avons déjà utilisés précédemment pour les essais de réduction des mailles monocliniques. Les diagrammes de Schiebold-Sauter sont des diagrammes qui résolvent sur un plan les taches obtenues sur une ligne d'un diagramme de cristal tournant; ils s'apparentent donc étroitement aux diagrammes plus connus de Weissenberg. La caméra que nous avons utilisée pour la prise de ces diagrammes est la même caméra universelle qui nous a déjà servi pour la prise des diagrammes de cristal tournant selon Polanyi et des diagrammes de Laue.

Les diagrammes de Laue, confirmant les résultats de nos mesures goniométriques, nous ont montré que les isomères α , γ et δ sont monocliniques holoèdres. Il y a donc 6 groupes spatiaux auxquels leur réseau pourrait appartenir; ce sont les groupes P2/m, P2₁/m, C2/m, P2/c, P2₁/c et C2/c. Le calcul des facteurs de structure et des extinctions relatives à ces groupes, très analogue à celui que nous avons présenté dans le chapitre sur l'essai de réduction des mailles monocliniques, a été fait, et les résultats de ce calcul se trouvent dans les tables internationales pour la détermination des structures cristallines [7]. D'après ces données les taches qui doivent figurer sur les diagrammes de chaque groupe sont les suivantes:

P2/m	(hkl)	pour tous les ordres	
	(h0l)	pour tous les ordres	
	(0k0)	pour tous les ordres	

 $P2_1/m$ (hkl) pour tous les ordres

- (h0l) pour tous les ordres
 - (0k0) seulement pour k = 2 n
- C2/m (hkl) seulement pour h + k = 2 n(h0l) seulement pour h = 2 n
 - (0k0) seulement pour k = 2 n
- P_2/c (hkl) pour tous les ordres

(h0l) seulement pour 1 = 2 n

(0k0) pour tous les ordres

- $P2_1/c$ (hkl) pour tous les ordres (h0l) seulement pour 1 = 2 n (h0k) seulement pour k = 2 n
- C2/c (hkl) seulement pour h + k = 2 n(h0l) seulement pour h = 2 n et l = 2 n(0k0) seulement pour k = 2 n

En vue de l'élimination des hypothèses d'appartenance à un des groupes spatiaux, nous n'avons, comme pour l'élimination des hypothèses de réduction et pour les raisons invoquées plus haut, tenu compte que des taches présentes dans les diagrammes de Laue.

Sur les diagrammes de Schiebold-Sauter, au contraire, c'est l'absence de taches que nous avons considérée. D'une part, ces diagrammes sont

Groupe spatial	Réflexions dont la présence est caractéristique	Réflexions figurant sur les diagrammes de Laue et dont la présence est incompatible avec la symétrie du groupe considéré	Réflexions dont l'absence sur les diagrammes de Schiebold-Sauter indique l'incompatibilité avec la symétrie du groupeZone de l'axe de symétrieZones des axes non-rectangulaires		
P 2/m	(hk1) pour tous les ordres (h01) pour tous les ordres (0k0) pour tous les ordres			(0k0) seulement avec k pair (film 167)	
$P2_1/m$	(hk1) pour tous les ordres (h01) pour tous les ordres (0k0) seulement si $k=2n$		(h01) seulement avec h pair (film 364)		
C 2/m	(hk1) seulement si $h + k = 2n$ (h01) seulement si $h = 2n$ (0k0) seulement si $k = 2n$	ī41 (film 159)			
P 2/c	(hk1) pour tous les ordres (h01) seulement si $1=2n$ (0k0) pour tous les ordres			(0k0) seulement avec k pair (film 167)	
$P2_1/c$	(hk1) pour tous les ordres (h01) seulement si $1=2n$ (0k0) seulement si $k=2n$				
C2/c	(hk1) seulement si $h + k = 2n$ (h01) seulemt. si $h=2n$ et $l=2n$ (0k0) seulement si $k=2n$	Ī41 (film 159)	5 5		

Isomère α

enregistrés en radiation monochromatique, et l'absence d'une tache ne peut donc pas provenir du manque d'intensité de la radiation apte à donner la réflexion correspondante. D'autre part, nous n'avons pas considéré sur ces diagrammes des taches isolées, mais deux ensembles de taches: celles correspondant aux réflexions par les plans (h0l) et celles correspondant aux réflexions par les plans (0k0); l'absence d'une des réflexions de l'un des ensembles sur les diagrammes ne présentant que peu de taches, n'a pas été retenue pour infirmer l'hypothèse basée sur la présence de l'ensemble: une disposition très particulière de l'ensemble de tous les atomes formant le réseau, des défauts de centrage ou le développement géométrique du cristal, toujours très petit, peuvent, en effet, être cause de l'absence de l'une des réflexions. En revanche, l'absence systématique de toutes les réflexions d'un ensemble de plans ne saurait

Groupe spatial	Réflexions dont la présence est caractéristique	Réflexions figurant sur les diagrammes de Laue et dont la présence est incompatible avec la symétrie du groupe considéré	Réflexions d sur les dia Schiebold-S l'incompat la symétrie Zone de l'axe de symétrie	ont l'absence grammes de auter indique ibilité avec e du groupe Zones des axes non-rectangulaires	
P2/m	(hkl) pour tous les ordres (h0l) pour tous les ordres (0k0) pour tous les ordres		e. P	(0k0) seulement avec k pair (film 182)	
$P2_1/m$	(hk1) pour tous les ordres (h01) pour tous les ordres (0k0) seulement si $k = 2n$		(h01) seulement avec 1 pair (film 362)		
C2/m	(hk1) seulement si $h + k = 2n$ (h01) seulement si $h = 2n$ (0k0) seulement si $k = 2n$	4110 (film 95)			
P 2/c	(hk1) pour tous les ordres (h01) seulement si $1=2n$ (0k0) pour tous les ordres			(0k0) seulement avec k pair (film 182)	
P 2 ₁ /c	(hk1) pour tous les ordres (h01) seulement si $1=2n$ (0k0) seulement si $k=2n$	×			
C 2/c	(hk1) seulement si $h + k = 2n$ (h01) seulemt. si $h=2n$ et $l=2n$ (0k0) seulement si $k=2n$	41 <u>10</u> (film 95)	u n n "		

Isomère γ

être attribuée à autre chose qu'à l'appartenance du réseau à l'un des groupes spatiaux pour lesquels la disposition des atomes détermine l'absence des réflexions de l'ensemble considéré.

Comme pour les diagrammes de Laue, la présence d'une tache, pour autant qu'elle soit parfaitement nette, est un critère absolu, infirmant l'hypothèse qui implique son absence.

Les tableaux ci-dessous résument les éliminations auxquelles nous avons pu procéder grâce à la présence ou à l'absence de certaines taches sur nos diagrammes. Dans la première colonne figurent les symboles des 6 groupes spatiaux de l'holoédrie monoclinique. Dans la seconde colonne, en regard de chaque symbole, se trouvent les réflexions présentes, caractéristiques du groupe. Dans la troisième colonne figurent les faces dont les réflexions sont marquées sur les diagrammes de Laue, et dont la

Groupe spatial	Réflexions dont la présence est caractéristique	Réflexions figurant sur les diagrammes de Laue et dont la présence est incompatible avec la symetrie du groupe considéré	Réflexions d sur les dia Schiebold-Si l'incompat la symétrie Zone de l'axe de symétrie	ont l'absence grammes de auter indique ibilité avec e du groupe Zones des axes non-rectangulaires
P 2/m	(hk1) pour tous les ordres (h01) pour tous les ordres (0k0) pour tous les ordres			(0k0) seulement avec k pair (film 367)
$P 2_1/m$	(hk1) pour tous les ordres (h01) pour tous les ordres (0k0) seulement si $k=2n$		(h01) seulement avec 1 pair (film 368)	
C 2/m	(hk1) seulement si $h + k = 2n$ (h01) seulement si $h = 2n$ (0k0) seulement si $k = 2n$	812 (film 328)	n n	. *
P 2/c	(hk1) pour tous les ordres (h01) seulement si $1=2n$ (0k0) pour tous les ordres	s R		(0k0) seulement avec k pair (film 367)
P 2 ₁ /c	(hk1) pour tous les ordres (h01) seulement si $1=2n$ (0k0) seulement si $k=2n$			×
C2/c	(hk1) seulement si $h + k = 2n$ (h01) seulemt.si $h=2n$ et $l=2n$ (0k0) seulement si $k=2n$	812 (film 328)	•	

Isomère δ

présence est incompatible avec celle des éléments de symétrie du groupe spatial en face duquel elles figurent. Dans la quatrième et la cinquième colonnes se trouvent les faces dont les réflexions manquent sur les diagrammes de Schiebold-Sauter, et dont l'absence est incompatible avec la présence des éléments de symétrie du groupe spatial en regard duquel elles figurent. La quatrième colonne comprend les faces dont les réflexions manquent sur les diagrammes de Schiebold-Sauter qui recueillent les faisceaux réflechis par les plans (h0l); dans la cinquième colonne se trouvent les faces dont les réflexions manquent sur les diagrammes de Schiebold-Sauter développant les plans des zones des axes non rectangulaires.

Les éliminations successives auxquelles nous avons pu procéder, et dont les tableaux ci-dessus résument les résultats, nous amènent à la conclusion suivante: les réseaux des trois isomères monocliniques α , γ et δ de l'hexachlorocyclohexane appartiennent au groupe spatial P2₁/c. Ce groupe est caractérisé par les éléments de symétrie suivants:

axes de symétrie hélicoïdaux en $[0y\frac{1}{4}]$, $[0y\frac{3}{4}]$, $[\frac{1}{2}y\frac{1}{4}]$, $[\frac{1}{2}y\frac{3}{4}]$,

plans de symétrie alterne avec glissement $\frac{c}{2}$ en $(x\frac{1}{4}z)$, $(x\frac{3}{4}z)$.

Pour que la notation de ces éléments de symétrie puisse se faire comme nous venons de l'écrire et conformément à l'usage établi, nous devons intervertir les axes des x et des z de l'isomère α .

Détermination des caractères optiques

L'examen des caractères optiques a été fait accessoirement pour orienter les recherches goniométriques et pour en vérifier les résultats.

Les cristaux furent obtenus sous forme de préparations de microscopie, par refroidissement entre porte-objet et couvre-objet, jusqu'à la température ambiante, de solutions nitrobenzèniques, saturées à 50° C et chauffées à cette température.

Les indices de réfraction n'ont pu être déterminés qu'approximativement, les isomères de l'hexachlorocyclohexane n'étant pas complètement insolubles dans les liquides d'indice connu dont nous disposions. En raison de cette imprécision nous nous sommes contentés de déterminer un indice de réfraction moyen par la méthode de la frange de Becke.

Nous avons défini le caractère optique des isomères et mesuré les angles d'extinction caractéristiques sur les faces (010) des isomères monocliniques à l'aide du microscope polarisant. Nous nous sommes éclairés par la lumière d'une lampe donnant les radiations jaunes du sodium. Les

angles que nous indiquerons sont donc les angles correspondant aux radiations de ce domaine du spectre. Pour la mesure des angles 2 V entre les axes optiques des isomères monocliniques, nous avons utilisé une platine théodolite munie de demi-boules d'indice 1,645, indice très voisin des indices moyens de nos isomères, et nous avons opéré selon la méthode de Fedoroff.

Nous donnons également une série de valeurs d'angles que font entre elles les arêtes d'intersection entre la face sur laquelle le cristal est posé et les faces limitant le pourtour du cristal. La désignation des faces, qui souvent n'est pas la plus simplé, a été choisie de sorte qu'elle corresponde aux photographies illustrant le texte.

Dans ce qui suit, on désignera par n' le grand axe, par n'' le petit axe de l'ellipse active d'une section biréfringente dont la position n'est pas encore fixée par rapport aux indices principaux n_g , n_m et n_p .

Isomère α (Planche I)

L'indice de réfraction moyen par rapport à l'air est de 1,62.

Une partie des cristaux se présente en tablettes à contour octogonal, symétrique par rapport à deux directions perpendiculaires entre elles et parallèles à deux couples d'arêtes limitant le polygone octogonal.

Les arêtes forment entre elles des angles de 117° et 153° environ. La valeur de ces angles est en excellente concordance avec celle des angles que forment entre elles les traces des plans (001), (011) et (hk0) sur la face (100). Ces angles, calculés sur la base des constantes du réseau que nous avons déterminées, sont de $117^{\circ} 1/4$ et $153^{\circ} 3/4$. Ces cristaux reposent donc sur leur face (100).

La direction d'extinction n', coïncidant avec la trace du plan des axes optiques, est la direction de l'arête (hk0)/(100), flanquée de deux angles de 117°. On observe, en lumière convergente, la sortie de l'un des axes optiques exactement en bordure du champ. Un des axes optiques fait donc avec la normale à la face (100) un angle très voisin de 30°.

Les autres cristaux se présentent en tablettes plus allongées, à contour hexagonal; les arêtes qui limitent le polygone forment entre elles des angles de 111°, 126° et 123° environ. On reconnaît immédiatement l'angle β , dont la valeur donnée par les mesures goniométriques est de 111° 1/4. Les plans ($\overline{100}$), ($\overline{201}$) et (001) coupent la face ($0\overline{10}$) selon des arêtes qui font entre elles des angles de 111° 1/4, 125° 3/4 et 123° La valeur de ces angles est en excellente concordance avec celle des angles observés. Les cristaux reposent donc sur leur face (010).

L'angle d'extinction entre la direction n' (qui n'est autre que n_g), et la direction de l'axe des z est de 41° dans l'angle β . L'indice principal n_m est perpendiculaire à la face.

L'isomère α est biaxe positif. L'angle des axes optiques est de 42°.

Isomère β

L'isomère β , étant cubique, est uniréfringent. Son indice de réfraction moyen est de 1,64.

Isomère γ (Planche II)

L'indice de réfraction moyen est de 1,64.

Un certain nombre de cristaux sont placés sur une face limitée par quatre arêtes, parallèles deux à deux, et qui font entre elles des angles voisins de 109° et 71°. Nous retrouvons donc ici l'angle β qui est de 109° 1/4, et les arêtes correspondent aux traces des plans (210) et (001) sur la face (010).

L'axe d'ordre 2 coïncide avec la bissectrice de l'angle aigu des axes optiques; cette bissectrice est n_g . L'angle entre la direction d'extinction n'' (qui n'est autre que n_p), et la direction de l'axe des z est de 11° dans l'angle $(180 - \beta)$.

Les cristaux qui reposent sur la face (010) sont parfois limités par six arêtes qui font entre elles des angles d'environs 109° , 71° , 146° , 143° , 122° et 129° . La valeur de ces angles est en très bonne concordance avec celle des angles formés par les traces des faces ($\overline{100}$), ($0\overline{12}$), (100), ($1\overline{11}$), ($0\overline{12}$), ($\overline{111}$) et ($\overline{100}$) sur le plan ($0\overline{10}$), et qui sont de 109° 1/4, 70° 3/4, 146° 1/2, 142° 3/4, 121° 1/2 et 129° 1/4.

La plupart des cristaux se présentent avec un contour octogonal ou décagonal, symétrique par rapport à deux directions perpendiculaires entre elles. Les arêtes des deux contours déterminent entre elles des angles qui sont respectivement de 107° , 160° , 113° et de 143° , 160° et 113° . Les valeurs de ces angles sont en très bonne concordance avec les valeurs des angles que font entre elles d'une part les traces des plans ($\overline{2}10$), ($\overline{2}10$), ($\overline{111}$) et ($\overline{111}$), d'autre part les traces des plans (100), (210), (111) et ($\overline{111}$) sur la face (001). La valeur de ces angles, calculée à partir de nos données sur le réseau, est respectivement de 106° 3/4, 160° 1/2 et 112° 1/4 pour les premiers, de 143° 1/4, 160° 1/2 et 112° 1/4 pour les seconds. Ces cristaux reposent donc sur la face (001).

La direction d'extinction n'' est perpendiculaire à l'arête flanquée par les angles de 143° .

L'isomère γ , biaxe positif, a un angle des axes optiques de 56°.

M. Lorétan: Propriétés optiques et structurales des isomères de l'hexachlorocyclohexane Bull. suisse de Min. et Pétr. Vol. 32, fasc. 1, 1952

Hexachlorocyclohexane α

M. Lorétan: Propriétés optiques et structurales des isomères de l'hexachlorocyclohexane

Planche II

Bull. suisse de Min. et Pétr. Vol. 32, fasc. 1, 1952

Hexachlorocyclohexane γ

M. Lorétan: Propriétés optiques et structurales des isomères de l'hexachlorocyclohexane

Planche III

Bull. suisse de Min. et Pétr. Vol. 32, fasc. 1, 1952

imes 85

Hexachlorocyclohexane δ

Leere Seite Blank page Page vide

Isomère δ (Planche III)

L'indice de réfraction moyen est de 1,63.

La grande majorité des cristaux se présente en tablettes à contour sub-décagonal ou sub-hexagonal, symétrique par rapport à deux directions perpendiculaires entre elles. Les arêtes principales délimitant ces cristaux font entre elles des angles d'environ 134° , 161° et 127° dans le premier cas, de 116° et 127° dans le second cas. Les valeurs de ces angles sont en excellente concordance avec celles des angles que forment entre elles les traces des plans (h0l), (012), ($\overline{1}11$) et ($11\overline{1}$) d'une part, et les traces des plans (h0l), ($\overline{1}11$) et ($11\overline{1}$) d'autre part, sur la face ($\overline{1}00$). La valeur de ces angles, calculée sur la base de nos déterminations des constantes du réseau, est de $134^{\circ} 1/2$, $161^{\circ} 3/4$ et $127^{\circ} 3/4$ dans le premier cas, de $116^{\circ} 1/4$ et $127^{\circ} 3/4$ dans le second cas.

La direction d'extinction n'' (qui n'est autre que n_p), coïncidant avec l'axe de symétrie du cristal, est bissectrice de l'angle de 127°.

Quelques cristaux, présentant également un contour polygonal, symétrique par rapport à deux directions perpendiculaires entre elles, montrent, en lumière convergente, l'image caractéristique d'une section presque perpendiculaire à une bissectrice d'angle des axes optiques. Cette bissectrice est n_g . La valeur des angles que déterminent entre elles les arêtes limitant le polygone est de 122° et 148°. Cette valeur est en parfaite concordance avec celle, obtenue par le calcul à partir des constantes que nous avons déterminées, des angles que forment entre elles les arêtes d'intersection des faces (100), (110) et (010) avec la face (001). Ces cristaux sont donc posés sur leur face (001).

Il est tout à fait exceptionnel de trouver un cristal placé sur la face (010). Le seule que nous ayons pu observer posé bien à plat sur cette face, présentait un contour limité par cinq arêtes faisant entre elles des angles 117°, 136°, 107°, 118° et 62°. La valeur de ces angles concorde très bien avec celle des angles formés par les traces des faces (001), ($\overline{101}$), ($\overline{100}$), ($00\overline{1}$) et ($10\overline{1}$) sur la face (010). Cette valeur, calculée sur la base de nos déterminations des constantes du réseau, est de 117° 3/4, 135° 3/4, 106° 1/2, 117° 3/4 et 62° 1/4.

La direction d'extinction n' (qui n'est autre que n_g), fait avec la direction de l'axe des z un angle de 20° dans l'angle β .

Une partie des cristaux se présente sous forme de prismes rectangulaires plus ou moins allongés, terminés par des faces de pyramide. Ces cristaux présentent, en lumière convergente, un axe optique presque perpendiculaire à la face sur laquelle ils reposent. Nous avons pu vérifier

sur des cristaux mesurés au goniomètre que ces baguettes sont des cristaux allongés selon l'axe des x, le prisme étant formé par les faces $\{012\}$ presque perpendiculaires entre elles. Les angles de 146°, 112°, 102° et 78°, formés par les arêtes d'intersection des faces terminales avec la face supérieure du cristal, correspondent aux angles déterminés par les faces $(01\overline{2})$, $(11\overline{1})$, (100), $(0\overline{1}2)$ et $(\overline{1}00)$ sur la face (012). La valeur de ces angles, calculée à partir de nos données sur le réseau, est de 146° 1/2, 112° , $101^\circ 3/4$ et 78° 1/2.

L'isomère δ est biaxe négatif. L'angle des axes optiques est de 78°.

Isomère $\delta_{\mathbf{H}}$

L'isomère $\delta_{\rm H}$ est uniaxe négatif. Son indice ordinaire est voisin de 1,62.

Nous résumons nos déterminations optiques en reportant les indices principaux et les axes optiques sur des projections stéréographiques où, morphologiquement, pour la clarté, ne figurent que les zones principales.

Conclusion

L'intérêt porté à l'hexachlorocyclohexane, et notament à l'isomère γ , depuis la découverte des propriétés insecticides de ce dernier, fait que nous n'avons pas été les seuls à faire des investigations dans le domaine des propriétés cristallographiques de ce composé. Nous voulons donc, pour terminer, passer en revue les travaux sur le même sujet dont les résultats ont été publiés pendant que nous faisions cette étude.

Une étude très complète de la structure cristalline de l'isomère γ a été publiée en 1948 et 1950 par MM. BIJVOET, VAN VLOTEN, KRUISSINK et STRIJK [9]. Ces auteurs admettent que la face (010) du réseau, tel que nous l'avons défini, est une face centrée.

S'il est vrai que les diagrammes tournants autour d'une diagonale de la face (010) semblent indiquer un paramètre égal à la moitié de cette diagonale, nous remarquerons ceci: il n'est pas exclu que l'arrangement particulier des atomes fasse que les réflexions des lignes intercalaires d'ordre impair, pour un diagramme où elles seraient bien marquées, soient atténuées jusqu'à ne plus se marquer. Les réflexions des diagrammes de Laue qui nous ont amené à écarter l'hypothèse selon laquelle la face (010) serait centrée, réflexions celles-ci bien présentes, semblent fournir un argument décisif contre cette hypothèse.

Les vecteurs optiques des isomères monocliniques de l'hexachlorocyclohexane en projectionstéréographique 157

Les diagrammes tournants autour des diagonales correspondantes des faces (010) de l'isomère δ , nous mettent en présence du même conflit. Dans un article publié en 1950, MM. BIJVOET, VAN BOMMEL et STRIJK [10] admettent que cette face est centrée. Mais là, encore, nous sommes obligés de rejeter l'hypothèse, puisqu'il y a des réflexions certaines, constatées sur les diagrammes de Laue, qui seraient impossibles, si on admettait une maille élémentaire de dimensions inférieures à celles que nous avons admises.

Au point de vue de la morphologie, un article récent de Mme KÖFLER [11] donne des indications d'une précision extrême sur les transformations polymorphiques des isomères de l'hexachlorocyclohexane.

Nous avons identifié la forme hexagonale de haute température de l'isomère δ , indiquée par Mme Köfler, avec notre $\delta_{\mathbf{H}}$. Nous avons cependant quelque peine à admettre que ce soit une forme spécifiquement de haute température. En effet, nous l'avons obtenue deux fois à température ambiante (entre 15°C et 25°C), par évaporation lente de solutions dans le tétrachlorure de carbone, et les lamelles se sont conservées depuis 1949 sans subir de modification. Toutefois, comme l'histoire de ces substances avant leur cristallisation en lamelles hexagonales ne nous est pas connue d'une façon précise, on pourrait admettre que l'isomère fut porté, à un certain moment de son existence, à une température élevée, subissant ainsi une modification irréversible. Cette supposition est cependant contredite par les observations suivantes: une partie de la fraction des lamelles hexagonales, redissoute dans le tétrachlorure de carbone, a fourni des cristaux d'isomère δ monoclinique dont nous avons décrit les formes. S'agirait-il alors d'une forme de haute température ne modifiant sa structure à basse température que d'une façon extrêmement lente et dans des conditions qui restent encore à préciser?

Finalement nous citerons les indications sur les propriétés optiques de l'isomère γ données par W. C. MAC CRONE [12]. Les déterminations faites par cet auteur sont en excellente concordance avec les nôtres.

Références bibliographiques

- 1. R. E. SLADE: The γ Isomer of Hexachlorocyclohexane. Chemistry and Industry, Oct. 1945.
- 2. L. W. DAASCH: Infrared Spectroscopic Analysis of five Isomers of 1, 2, 3, 4, 5, 6-Hexachlorocyclohexane. Analytical Chemistry, Oct. 1947.
- 3. J. B. LA CLAIR: Determination of the Gamma Isomer of Hexachlorocyclohexane. Analytical Chemistry, March 1948.

- 4. C. W. BOWEN and MILTON A. POGORELSKIN: Determination of the Gamma-Isomer Content of Benzene Hexachloride. Analytical Chemistry, April 1948.
- 5. GERRIT DRAGT: Analysis of 1, 2, 3, 4, 5, 6-Hexachlorocyclohexane for Gamma Isomer. Analytical Chemistry, August 1948.
- 6. MARCEL WILLERMAIN: Généralisation de la méthode d'analyse de Thorpe et application au dosage de l'isomère γ dans l'hexachlorocyclohexane technique. Analytica Chimica Acta, Vol. 3 1949.
- 7. Internationale Tabellen zur Bestimmung von Kristallstrukturen. Gebr. Borntraeger, Berlin 1935.
- 8. STERLING B. HENDRICKS and CONSTANT BILICKE: The Space-Group and Molecular Symmetry of β -Benzene Hexabromide and Hexachloride. The Journal of the American Chemical Society, Dec. 1926.
- 9. v. VLOTEN, KRUISSINK, STRIJK and BIJVOET: The Crystal Structure of "Gammexane", $\gamma C_6 H_6 Cl_6$. Acta Crystallographica, March 1950 (aussi dans: Nature 162, 1948).
- 10. v. BOMMEL, STRIJK and BIJVOET: Crystal structure of δ-Benzene Hexachloride. Proc. Koninkl. Nederland. Akad. Wetenschap. 53 (1950).
- 11. A. KOFLER: Zur Kenntnis der Hexachlorcyclohexane und ihrer Gemische, Mitteilung I: Polymorphie. Chemische Berichte 84, 1951.
- 12. W. C. MAC CRONE: Crystallographic data γ -Hexachlorocyclohexane. Analytical Chemistry 21—7 (1949).

	Isomères				
	α	β	γ	δ	δ _H
Système cristallin	monocli- nique	cubique	monocli- nique	monocli- nique	hexagonal
β	111° 1/4		109° 1/4	$106^{\circ} \ 1/2$	
a	12,9 Å	10,1 Å	15,2 Å	13,9 Å	14,3 ₅ Å
b ₀	12,8		$10,2^{-1}$	8,7	
C ₀	6,6 ₅		13,8	17,7	11,95
Z	4	4	8	8	8
Groupe spatial	$P 2_1/c$		P 2 ₁ /c	$P 2_1/a$	
$2~{ m V}$	$+42^{\circ}$		$+56^{\circ}$	-78°	- 0°
Plan des axes					
optiques	(010)		」 上 (010)	⊥ (010)	
Indice principal				4803 60	· · · ·
⊥ (010)			ng	n _p	
Extinction sur			Ŭ	F	
(010)	$n_g A z = 41^\circ$		$n_p \Lambda z = -11^\circ$	$n_g \Lambda z = 20^\circ$	

Tableau récapitulant les caractères cristallographiques déterminés

Reçu le 31 octobre 1951.