Zeitschrift:	Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band:	46 (1966)
Heft:	2
Artikel:	Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon
Autor:	Trommsdorff, Volkmar
DOI:	https://doi.org/10.5169/seals-36136

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 25.06.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon

Von Volkmar Trommsdorff (Basel)*)

Mit 7 Textfiguren

Abstract

Siliceous carbonate rocks are well suited for mapping zones of progressive regional metamorphism in the Lepontine and Bergell Alps. In these areas marbles of Alpine age frequently occur containing parageneses of the simple system CaO-MgO-SiO₂-H₂O-CO₂. With increasing temperature the order of appearance of phases in the Lepontine region is: talc, tremolite, diopside, forsterite and in the Bergell Alps wollastonite. The different reaction steps are characterized by certain mineral parageneses. Regional zones of these, separated by isogrades, have been mapped, using only compact rocks with an excess of calcite, and no fissuremineral associations. The tremolite-calcite isograde (first appearance of the paragenesis tremolite-calcite) agrees with the $\gtrsim 30\%$ an limit of the paragenesis calcite-plagioclase after WENK (1962), both corresponding approximately to the first appearance of staurolite and kyanite according to NIGGLI (1960), and of scapolitecalcite parageneses. Far above these limits marking the beginning of the amphibolite facies, the diopside-calcite and the forsterite-calcite isogrades coincide within a region marked by An-contents of more than 85% in the paragenesis calcite-plagioclase (after SCHWANDER and WENK 1966). The field of sillimanite is surrounded by these isogrades. Within the diopside and forsterite zones postkinematic granitoid mobilisate is frequent. The wollastonite isograde surrounds the Bergell alps. Wollastonite also occurs in the eastern Lepontine region (Valle della Mera). In the same area cordierite appears. The isogrades, frequently discordant to the planar and linear structures, are subvertical in the Simplon area. WENK'S hypothesis of an alpine "heat dome" in the Lepontine region is supported by our observations. Other conclusions, drawn from our data, concern the history of some of the Lepontine gneiss bodies. From known equilibrium data, we conclude that in the Simplon area the temperature of metamorphism was $>450^{\circ}$ C. This tem-

^{*)} Mineralogisch-petrographisches Institut, Bernoullianum, 4000 Basel.

perature gradually rose toward the east to $550-600^{\circ}$ C (central Lepontine region) and to about 700° C (Bergell Alps). The occurence of wollastonite and cordierite indicates low pressure metamorphism in the eastern parts of our region, pressures of more than three kb may have prevailed the western area.

I. Einleitung

Seit der klassischen Arbeit von BARROW (1893) in den Schottischen Highlands, beschäftigten sich die Petrographen immer wieder mit der Verteilung von Mineralien und ihren Paragenesen in Gebieten mit einer progressiven Änderung des Metamorphosegrades. Besonders TILLEY (1925, 1930), der im gleichen Gebiet arbeitete, verdanken wir zahlreiche Anregungen und Neuerkenntnisse zu diesem Thema. Der Fortschritt, der in den letzten Jahren auf den Gebieten der theoretischen und experimentellen Petrologie erzielt wurde, bedeutet neuerdings eine grosse Anregung für den Petrographen, sich mit dem Studium metamorpher Zonen zu befassen. In der Schweiz wurde die lepontinische Region zum Brennpunkt derartiger Verteilungsanalysen von Mineralen und Mineralparagenesen; die Untersuchungen wurden von verschiedenen Hochschulen unter verschiedenen Gesichtspunkten begonnen (BAMBAUER, BRUNNER und LAVES 1962; BEARTH 1958, 1962; E. NIGGLI 1960, 1965; E. WENK 1962, 1966).

Unser Thema betrifft die Metamorphose quarzhaltiger Karbonatgesteine in den Lepontinischen Alpen, deren Studium wir aus verschiedenen Gründen für besonders interessant halten: erstens sind Karbonatgesteine zwischen Bernina und Simplon weit verbreitet, zweitens lassen sich in ihnen häufig Mineralvergesellschaftungen finden, die chemisch einfache Systeme darstellen. Nicht zuletzt sind in den Karbonatgesteinen die Kriterien dafür, dass es sich bei den Mineralien, die wir verfolgen, um Bildungen der alpinen Metamorphose handelt, mit Abstand die besten. Da wir uns besonders für das erste Auftreten bestimmter Mineralassoziationen in Profilen mit zunehmender Metamorphose interessieren, ist diese letzte Bedingung besonders wichtig; gerade im S und im NE unseres Gebietes bereitet in anderen Gesteinen die Frage nach dem Alter der Kristallisation oft Schwierigkeiten. Die Karbonatgesteine sind aber gerade in den interessanten Randzonen des lepontinischen Gebirges meist fossilbelegtes Mesozoikum, in den zentralen Tessineralpen und in der sog. Wurzelzone sind die Marmore diejenigen Gesteine, die am heftigsten während der alpinen Gebirgsbildung deformiert wurden, die Kristallisation lässt sich in ihnen am besten als posttektonisch belegen.

Einen gewissen Nachteil bildet die Tatsache, dass alle Reaktionen in Karbonatgesteinen in der Natur praktisch bivariant, d. h. von den Partialdrucken einer gemischten CO_2 -H₂O Gasphase abhängig sind. Wie jedoch das Beispiel der Wollastonitreaktion zeigt, können wir aber in calcitreichen Marmoren stets mit höheren Molenbrüchen X_{CO_2} rechnen, was für unsere Betrachtungen wichtig ist¹). Um diese Bedingung sicher einzuhalten, beschränken wir uns auf Gesteine mit Calcitüberschuss, und lassen ausserdem Kluftbildungen ausser Betracht.

In dieser Arbeit werden eine Reihe neuer Verteilungskarten präsentiert, sie zeigen die Verbreitung von Mineralparagenesen mit Tremolit, Diopsid, Forsterit, Wollastonit (daneben Skapolith, Humitmineralien). Die eigentlichen Eichpunkte der Verteilungskarten bilden reine Paragenesen des Systems CaO-MgO-SiO₂-CO₂-H₂O, sie sind auf der Liste im Anhang besonders gekennzeichnet. Wir haben uns aber entschlossen, auch Fundpunkte in die Karten mit einzubeziehen, an denen weitere Mineralien an der Paragenese beteiligt sind. Die häufigsten dieser Verunreinigungen sind Skapolith, Glimmer und Plagioklas. Es zeigte sich nämlich im Verlaufe der Untersuchungen, dass die Verbreitung der reinen Paragenesen die gleiche ist, wie diejenige der durch weitere Gemengteile verunreinigten, hält man die Bedingung des Calcitüberschusses streng ein.

Die Karten stützen sich in erster Linie auf Untersuchungsmaterial, das im Mineralogisch-Petrographischen Institut Basel zur Verfügung stand; bei einem Teil handelt es sich um Proben, an denen E. WENK (1962) den An-Gehalt der Plagioklase untersuchte. Eine Reihe weiterer Proben stellte der Konservator der Petrographischen Sammlung am Kristallographischen Institut der ETH, Dr. E. Eberhard zur Verfügung. Zahlreiche weitere Proben wurden von Kollegen am Basler Institut gesammelt, von den Herren J. Arnoth, Dr. P. Blattner, Dr. A. Günthert, J. Hansen, Dr. J. Hunziker, F. Keller, Dr. A. G. Milnes, Dr. A. Spicher, Dr. W. Stern, Dr. H. R. Wenk, Dr. H. Wieland, sowie von Zürich die Herren M. Fumasoli, A. Elsener, R. Hänny. Ihnen allen, insbesondere Herrn Prof. E. Wenk gilt mein Dank.

II. Bemerkungen zur Metamorphose im System CaO-MgO-SiO₂-H₂O-CO₂ im Tessin und Bergell

Die Metamorphose kieseliger Dolomitgesteine gilt seit der klassischen Arbeit von BOWEN (1940) als eines der relativ gut bekannten Kapitel

¹) Im geschlossenen System wird sich bei Reaktionen, an denen CO_2 frei wird, sehr schnell ein hoher Gasdruck mit hohem X_{CO_2} aufbauen. Dass dies tatsächlich der Fall ist, beweist das Fehlen von Wollastonit in Gebieten, in denen die Metamorphose unter höheren Drucken stattfand.

der Petrologie. Die Succession der sich bei steigender Temperatur einander ablösenden Mineralphasen im System CaO-MgO-SiO₂-CO₂ wurde von diesem Autor auf Grund von Naturbeobachtungen in übersichtlicher Weise dargestellt, die paragenetischen Zusammenhänge lassen sich im Dreieck CaO-MgO-SiO₂ gut überblicken. Für eine Reihe der auftretenden Reaktionen liegen heute Gleichgewichtsdaten vor - die Bildung von Wollastonit aus Quarz und Calcit stellt seit Goldschmidt (1912) ein derartiges Studienobjekt dar, daneben versuchen neuerdings sowohl die Amerikaner (GREENWOOD 1962, WEEKS 1956, TURNER 1966) als auch die Schule um WINKLER (METZ und WINKLER 1963, 1964, 1965) auf rechnerischem und experimentellem Wege die Gleichgewichtsbedingungen einer Reihe von Reaktionen des erwähnten Systems zu ermitteln. Dass die Anwendung dieser Daten auf die Natur bisweilen Schwierigkeiten begegnet, zeigt eindrücklich das Beispiel der Al₂SiO₅ Modifikationen — und dass dies nicht der Fehler der Natur sein kann, leuchtet ein. Die Aufgabe des Feldpetrographen ist demnach eine mehrfache, sie betrifft einmal die subtile Abklärung der natürlichen Verhältnisse, sie besteht zum anderen in einer vermittelnden Rolle gegenüber Theoretiker und Experimentator, deren Arbeiten bekanntlich unter anderem darauf abzielen, die bei der Metamorphose herrschenden physikalisch-chemischen Bedingungen zu eruieren.

Der erste Schritt bei der Metamorphose wasserhaltiger, quarzführender Dolomitgesteine ist die Bildung von Tremolit oder Talk (Fig. 1):

3 Dolomit + 4 Quarz + H_2O = Talk + 3 Calcit + 3 CO₂ (1) 5 Dolomit + 8 Quarz + H_2O = Tremolit + 3 Calcit + 7 CO₂ (2)

TILLEY kam 1948 auf Grund von Feldbeobachtungen zu dem Schluss, dass offensichtlich die Talkbildung etwas früher, d. h. bei niedrigeren Temperaturen einsetzt, als diejenige von Tremolit. In den Lepontinischen Alpen findet sich Talk in Dolomitgesteinen ausserhalb des Tremolitfeldes — eine Tatsache, die ebenfalls für den obigen Schluss spricht. Neuerdings untersuchten METZ und WINKLER (1963) die Talkbildung experimentell — die Gleichgewichtstemperatur variiert stark in Abhängigkeit vom CO_2/H_2O -Molenbruch. Für die noch nicht im Experiment untersuchte Tremolitbildung vermutet WINKLER (1965) bei höheren Molenbrüchen X_{CO_2} eine niedrigere Gleichgewichtstemperatur und einen weniger temperaturabhängigen Verlauf der Gleichgewichtskurve im isobaren T/X_{CO_2} -Diagramm. In den Lepontinischen Alpen (z. B. Campolungo Nr. 34) treten nebeneinander die Paragenesen

2b)	Tremo	lit-Calcit-Dolomit
1b)	Talk	-Calcit-Dolomit
	Talk	-Calcit-Tremolit

auf. Es scheint sich um stabile Bildungen im kompakten Marmor zu handeln. Wir vermuten auf Grund unserer Felddaten, dass sich die Gleichgewichtskurven der Reaktionen 1 und 2 im Bereiche höherer X_{CO_2} spitzwinklig schneiden, derart, dass bei kleinem X_{CO_2} Talk bei niedrigeren Temperaturen gebildet werden kann als Tremolit, bei grossem X_{CO_2} umgekehrt die Tremolitbildung früher einsetzt als diejenige von Talk²).

Reaktionen zwischen den beiden Phasen Tremolit und Talk erscheinen nach folgenden Gleichungen möglich (vgl. TILLEY 1948)

 $5 \text{ Talk} + 6 \text{ Calcit} + 4 \text{ Quarz} = 3 \text{ Tremolit} + 6 \text{ CO}_2 + 2 \text{ H}_2\text{O}$ (3) $2 \text{ Talk} + 3 \text{ Calcit} = \text{ Tremolit} + \text{ Dolomit} + \text{ H}_2\text{O} + \text{CO}_2$ (4)

Von uns wurden bisher nur die Paragenesen

2a)Tremolit-Quarz-Calcitund2b)Tremolit-Calcit-Dolomit

systematisch regional verfolgt.

Die Verbreitung von Talk in Tessiner Marmoren ist bisher nicht mit genügender Genauigkeit bekannt, in den Tabellen ist Talk, soweit beobachtet, mit angeführt.

²) Da bei der Talkbildung Wasser verbraucht und CO₂ frei wird, ist zu erwarten, dass mit Fortschreiten der Reaktion (1) das X_{CO_2} grösser wird. Wenn nicht allzuviel Wasser zur Verfügung steht, wird die Reaktion bei steigender Temperatur und steigendem X_{CO_2} entlang der Gleichgewichtskurve verlaufen, solange, bis erstmals Tremolit direkt aus Dolomit, Quarz und Wasser gebildet werden kann. Über Beobachtungen zu diesem Thema wird an anderer Stelle berichtet.

Wir bezeichnen das Feld der Verbreitung der Paragenesen 2a und 2b als Tremolit-Calcitfeld. Die Aussengrenze dieses Feldes bildet der Tremolit-Calcit-Isograd. Da wir überall dort, wo während der Abkühlung noch Bewegungen andauerten, mit retrogressiven Vorgängen rechnen müssen³), eignet sich das Verschwinden von Paragenesen in Zonen höherer Metamorphose nicht, um eine Innengrenze unseres Feldes zu ziehen. Vielmehr muss diese dort liegen, wo erstmals anstelle der Paragenesen 2a und 2b neue Paragenesen auftreten, also dort, wo Tremolit mit Quarz und Calcit zu Diopsid, oder mit Dolomit zu Forsterit, oder mit Calcit zu Diopsid und Forsterit reagiert. Das erste Auftreten der Paragenesen Diopsid-Calcit und Forsterit-Calcit markiert die Innengrenze des Tremolitfeldes:

Da es scheint, dass die Diopsidbildung in unserem Gebiet ganz wenig früher einsetzt als diejenige von Forsterit, definieren wir unsere Zone höherer Metamorphose als das Diopsid-Calcitfeld, welches vom Calcit-Diopsid Isograd umgrenzt wird. Die Paragenesen mit Diopsid und Forsterit sind im Dreieck Fig. 2b zusammengefasst. Da wir uns prinzipiell auf Gesteine mit Karbonatüberschuss beschränken, sind dies die folgenden:

- 3a) Diopsid-Quarz-Calcit
- 4a) Forsterit-Calcit-Dolomit
- 4b) Forsterit-Diopsid-Tremolit
- 4c) Forsterit-Diopsid-Calcit

Die Stufen 3 und 4 wurden auf Grund der Beobachtung unterschieden, dass Diopsid unter den herrschenden Bedingungen offenbar etwas früher gebildet werden konnte, als Forsterit. In diesem Fall haben wir als weitere Paragenese zu berücksichtigen:

3b) Diopsid-Tremolit-Calcit (vgl. Fig. 2a).

Diese Paragenese findet sich verbreitet in Marmoren des Lepontins, es scheint sich dabei um eine stabile Bildung zu handeln. Aus den Verteilungskarten (Fig. 3, Fig. 4) allein lässt sich aber in den Tessineralpen schwierig entscheiden, ob Diopsid gleichzeitig oder früher auftritt als Forsterit. Im Bereiche von Cerentino, wo sich die Grenzen sehr scharf

³) Retrogressive Bildung von Tremolit aus Diopsid tritt im Bereich der "Wurzelzone" dort auf, wo Bewegungen die Kristallisation überdauert haben.

a) Paragenesen nach der Diopsidbildung (Reaktion 5).b) Paragenesen nach der Forsteritbildung (Reaktion 7). Höchste Metamorphosestufe in den Gebieten W des Meratales.

fassen lassen, laufen Diopsid-Calcit und Forsterit-Calcit Isograd praktisch konform, das einzige Vorkommen von Diopsid, das knapp ausserhalb der Forsteritgrenze liegt (Nr. 102 Dal'ovi, Val di Campo) führt Quarz und darf folglich nicht zur Entscheidung dieser Frage herangezogen werden. Da Forsterit in weiten Bereichen zwischen Verzasca und Mera nicht gefunden werden konnte, beschränken wir uns auf eine Kartendarstellung der Vorkommen und verwenden sie mit zur Abgrenzung unseres Diopsid-Calcit Isogrades⁴).

Auffallend ist innerhalb des Diopsid-Calcitfeldes die grosse Anzahl von Fällen mit der Paragenese 3b (Diopsid-Tremolit-Calcit). Ein typisches Beispiel stellt das Dolomitvorkommen von Monte Romerio (Nr. 122) dar. Hier findet sich ausserdem die Paragenese 2b (Tremolit-Dolomit-Calcit). Diese Paragenesen können nur dann nebeneinander auftreten, wenn sich aus Tremolit und Dolomit noch kein Forsterit bilden konnte (Reaktion 7), oder wenn die Forsteritreaktion (7) zurückgelaufen ist, ohne dass gleichzeitig die Diopsidreaktion (5) zurücklief. Wir haben also hier, unabhängig vom Verlauf der Isograden, ein Kriterium, das uns den Hinweis gibt, dass Diopsid tatsächlich etwas früher gebildet werden

⁴) Dolomitmarmore sind im Bereich der Wurzelzone spärlich; das Vorkommen von Monte Romerio (Nr. 122, vgl. FORSTER 1948) führt Diopsid und Tremolit, die Vorkommen von Castagneda (Calanca, Nr. 49; vgl. KÜNDIG 1926) und vom Valle d'Arbedo (Nr. 179; vgl. MITTELHOLZER 1936) führen neben Phlogopit reichlich Tremolit.

kann als Forsterit — unser Kriterium ist auch unabhängig davon, ob es sich um progressive oder um retrogressive Metamorphose handelt. Würde nämlich die Forsteritbildung bei niedrigeren Temperaturen als diejenige von Diopsid stattfinden, dann könnte die Paragenese 3b gar nicht erst auftreten. Die Verhältnisse sind in den Dreiecken Fig. 2a und Fig. 2b dargestellt, die von uns behandelten Paragenesen durch Ziffern gekennzeichnet.

WEEKS (1956) hat aus einer thermochemischen Kalkulation ebenfalls geschlossen, dass bei "Gleichgewichtsmetamorphose", die wir am ehesten noch in Karbonatgesteinen erwarten dürfen, Diopsid sich früher als Forsterit bildet. BOWEN (1940), der das umgekehrte annimmt, hat seine Reaktionsfolge ebenfalls auf Feldbeobachtungen zurückgeführt und zwar auf die Untersuchung der Kontaktmetamorphose auf Skye durch HARKER (1904).

Bisher lässt sich noch keine befriedigende Erklärung dafür finden, warum Forsterit in weiten Bereichen des Lepontins in Karbonatgesteinen fehlt; vielleicht ist im Bereich der Wurzelzone ein Mangel an Marmoren mit MgO-Überschuss daran schuld, möglicherweise spielt aber Metasomatose in den dolomitreichen Marmoren (SiO₂-Zufuhr) eine Rolle. Für letzteren Umstand spricht die Tatsache, dass Forsterit häufig nur im karbonatischen Kern von zonierten Kalksilikatschollen auftritt, die sich nicht nur im Bergeller Granit (Fornogebiet, Nr. 269; Trubinasca, Nr. 271), sondern auch in lepontinischen Marmoren (Frasco Nr. 260; vgl. TROMMSDORFF 1966) finden⁵). In der Wurzelzone findet sich Forsterit weit verbreitet in ultrabasischen Gesteinen, und man könnte auch daran denken, dass ein Teil dieser Olivinfelse metamorphe Dolomitgesteine sind, diese Annahme ist aber spekulativ, solange genauere Daten fehlen.

Ganz allgemein scheint in Gebieten der Regionalmetamorphose kieseliger Dolomite Diopsid das verbreitetere Mineral zu sein (LAITKARI 1919; ESKOLA 1922; VON ECKERMANN 1950; ENGEL und ENGEL 1953).

Nach den neuesten Experimenten von METZ und WINKLER (1964, 1965) sollten die Reaktionen 5 und 7 (Diopsid- bzw. Forsteritbildung) bei etwa gleicher Temperatur ablaufen. Beide Reaktionen zeigen im Temperatur-Molenbruch-Diagramm einen flachen Verlauf der Gleichgewichtskurve oberhalb eines $X_{CO_2} = 0.25$. Wie oben gezeigt wurde, scheint aber in unserem Gebiet Diopsid etwas früher aufzutreten als Forsterit, was offenbar erst bei höheren Drucken der Metamorphose möglich ist.

⁵) Im Kern dieser Schollen dürfen wir mit geschlossenen Systemen rechnen (vgl. TROMMSDORFF 1966).

In den Gebieten W der Mera ist — soweit wir das heute beurteilen können — mit der Bildung von Diopsid und Forsterit die höchste Metamorphosestufe erreicht. Quarz und Calcit bleiben nebeneinander stabil. Im Bergell ist dies nun über weite Bereiche nicht der Fall (vgl. Anhang), es kommt verbreitet zur Bildung von Wollastonit. Von den bisher bekannten Fundpunkten liegt der bei Brugo im Meratal (Nr. 301) am weitesten im W. Neu in unserem Dreieck ist also im Bergell die Linie Diopsid-Wollastonit, woraus sich als neue Paragenesen ergeben (Fig. 5):

- 5a) (Diopsid)-Wollastonit-Calcit
- 5b) (Diopsid)-Wollastonit-Quarz

Fig. 5. Paragenesen nach Reaktion 8.

Die Wollastonitbildung ist wohl eine der thermochemisch am besten bekannten Mineralreaktionen. Obwohl Wollastonit theoretisch bei niedriger Temperatur kristallisieren kann, finden sich in der Natur keine Beispiele hierfür, da die Gleichgewichtstemperatur der Reaktion mit steigendem CO_2 -Druck stark zunimmt. Dieser Druck wird sich im geschlossenen System sehr schnell aufbauen, da ja bei der Wollastonitreaktion CO_2 frei wird:

 $Calcit + Quarz = Wollastonit + CO_2.$ (8)

Tatsächlich wurde in Gebieten der tieferen Regionalmetamorphose bisher mit einer Ausnahme (MISCH 1964) kein Wollastonit gefunden. WINKLER (1965) leitet aus dieser Tatsache ab, dass wir in der Natur im allgemeinen mit hohen CO_2 -Molenbrüchen zu rechnen haben sowie mit geschlossenen Systemen, was wir für die Calcitmarmore akzeptieren⁶).

Für einen Druck von 3 Kilobar, den wir im Tessin zumindest annehmen müssen, beträgt die Gleichgewichtstemperatur der Reaktion (8) im

⁶) Beispiele von Tessiner und Bergeller Marmorvorkommen mit metasomatischen Zonierungen sprechen aber gegen die Allgemeingültigkeit dieser Ansicht (MITTELHOLZER 1936, ARTUS 1959, TROMMSDORFF 1966). Auch in der Wurzelzone, wo verbreitet Bewegungen während der Metamorphose angedauert haben, dürfen wir nicht immer mit geschlossenen Systemen rechnen.

Falle eine Mischungsverhältnisses der Gasphasen (CO₂ und H₂O) von 1:1 bereits 700° (vgl. WINKLER 1965, S. 30) — es ist also gar nicht verwunderlich, dass im Tessin bisher kein Wollastonit festgestellt wurde⁷). Um so beachtenswerter ist die Tatsache, dass er sich immerhin noch im Bereiche der Valle della Mera findet.

Der Wollastonit von Brugo im Meratal tritt nicht etwa in dünnen Kalksilikatbändern, sondern im kompakten Marmor auf, eine Erklärung im Sinne von MISCH (1964), der eine ständige starke Verdünnung des bei der Reaktion freigewordenen CO_2 durch H_2O annimmt, scheidet für dieses Beispiel aus. Wir haben also damit zu rechnen, dass in diesem Gebiet die Wollastonitbildung in einem relativ seichten Niveau stattfand; die Überlagerung kann zu diesem Zeitpunkt nicht sehr gross gewesen sein. Hierfür lassen sich noch weitere Belege anführen, worauf später noch eingegangen wird.

Zur Verbreitung von Humitmineralien

WENK gab 1963 erstmals eine Übersicht über die Verbreitung dieser Mineralgruppe in Marmoren des Lepontins. Inzwischen wurde eine Reihe neuer Vorkommen entdeckt. Ganz allgemein haben wir offenbar in Karbonatgesteinen mit Forsterit auch mit der Anwesenheit von Humitmineralien zu rechnen. Ihr Verbreitungsfeld entspricht demjenigen von Forsterit, an allen Fundpunkten mit Forsterit konnten auch Humitmineralien, vorwiegend Chondrodit, nachgewiesen werden. Die mikroskopische Unterscheidung farbloser, unverzwillingter Minerale der Humitgruppe von Forsterit ist durch den Achsenwinkel gegeben. Beachtenswert ist die häufige Assoziation dieser Mineralgruppe mit Mg-Klinochlor, worüber an anderer Stelle berichtet wurde (TROMMSDORFF 1966).

III. Die Verbreitung von Skapolith in karbonatischer Paragenese (Fig. 6)

Da uns das verbreitete Auftreten von Skapolith in den Tessineralpen auffiel, haben wir eine Karte der Verbreitung dieses Minerals in karbonatischer Paragenese für das Gebiet zwischen Malenco und Simplon zusammengestellt. Bekanntlich stellt die Skapolithgruppe eine Mischreihe zwischen den beiden Endgliedern Marialith und Mejonit, also einem Na- und einem Ca-Endglied dar. Auf Grund einer neueren Arbeit (MARA-KUSHEV 1964) schien es aussichtsreich, die Variabilität der Zusammen-

⁷) Während der Drucklegung dieser Arbeit "wiederentdeckte" der Autor ein Vorkommen von Wollastonit aus dem Tessintal (Nr. 140, Claro). Dieses bei TADDEI (1937) beschriebene Vorkommen wird bei CASASOPRA (1939) nicht erwähnt.

setzung von Skapolith in Abhängigkeit vom An-Gehalt koexistierenden Plagioklases im Profil steigenden Metamorphosegrades zu untersuchen. In der Natur sind Skapolithe bis zu einem Mejonitgehalt von 85% bekannt, das Endglied wurde bisher nur synthetisch hergestellt. Aus den Tessineralpen waren bisher Skapolithe mit einem Mejonitgehalt von durchwegs über 60% bekannt, eine Reihe von ihnen untersuchte PREIS-WERK (1917)⁸). Neuerdings gibt GRAESER Daten für Skapolith aus dem Dolomit des Binnatales. Es war demnach von vornherein zu erwarten, dass die Variabilität der Zusammensetzung der Tessiner Skapolithe geringer sein werde, als etwa diejenige von Plagioklas in karbonatischer Paragenese. Tatsächlich zeigte sich, dass es mit optischen Methoden nicht möglich ist, das Skapolithfeld zu gliedern. Da die optischen Parameter nicht nur in Abhängigkeit vom Mejonitgehalt, sondern auch vom Sulfatgehalt variieren, reicht die Genauigkeit der Methode nicht aus, um eventuelle regionale Schwankungen der Zusammensetzung zu kontrollieren. Auch in der Literatur finden sich relativ wenig Daten über die Zusammensetzung koexistierender Plagioklase und Skapolithe. Während SUBRAMANIAM (1956) Skapolithisierung von Plagioklas beschreibt basische Plagioklase werden durch basische Skapolithe ersetzt - belegt SHAW (1962) in einer Arbeit, dass saure Plagioklase mit basischen Skapolithen koexistieren können und umgekehrt. In Tessiner Karbonatgesteinen mit Skapolith und Plagioklas konnten bisher nur Kriterien gefunden werden, dass der Skapolith den Plagioklas verdrängt. Eine Gliederung des Tessiner Skapolith-Karbonatfeldes kann, soweit es sich jetzt beurteilen lässt, wenn überhaupt, dann nur mit chemischen Methoden durchgeführt werden.

Mit Sicherheit können wir bis jetzt folgende Aussagen machen:

- 1. Skapolith findet sich in Karbonatgesteinen des Tessin verbreitet bis in die "Wurzelzone" und zwar in Calcit- und Dolomitmarmoren, Bündnerschiefern und in Kalksilikatfelsen.
- 2. Die Zusammensetzung schwankt zwischen 65 und 80% Mejonit und kann am Aussenrande des Skapolithfeldes lokal bis 60% Mejonit heruntergehen.
- 3. Die Aussengrenze des festgestellten Skapolith-Karbonatfeldes stimmt gut mit der Grenze $\geq 30\%$ An nach WENK (1962) überein.
- 4. Nach MARAKUSHEV bedeutet die Koexistenz basischer Plagioklase und Skapolithe im Tessin, dass hohe CO₂-Drucke herrschten.

⁸) Unsere Verteilungsanalyse enthält nicht die Kluftskapolithe, die dieser Autor aus der oberen Leventina beschreibt.

IV. Regionale Folgerungen aus den Verteilungsanalysen

Im Simplonprofil lässt sich der Calcit-Tremolit-Isograd gut fassen. Nach PREISWERK (1913), auf dessen gewissenhafte Untersuchungen wir hier besonders Gewicht legen, tritt Tremolit im Simplontunnel erstmals bei 4.8 km ab Südportal, d. h. im Bereich der Teggiolo-Trias auf. An der Oberfläche wurden tremolitführende Proben im NW und SE des Pizzo Valgrande gesammelt (Nr. 2 und 3), genau senkrecht über dem Fundpunkt von PREISWERK. Die Staurolith- und die Disthengrenze scheinen im Bereich dieses Profils etwas weiter im NW im Gebiet des Wasenhorns zu verlaufen (vgl. PREISWERK 1913, S. 16, 28; E. NIGGLI und C. NIGGLI 1965). Soweit es sich aus den verfügbaren Daten beurteilen lässt, scheinen die Flächen des Tremolit-Calcit Isogrades senkrecht zu verlaufen, diejenige des ersten Auftretens von Disthen sogar gegen NW überkippt zu sein. Diese Beobachtung steht im Einklang mit überkipptem Einfallen der Flächen gleichen An-Gehaltes im Gebiet der Cistella nach WENK (1962) und im Widerspruch zu dem Profil nach CHATTERJEE (1961), worauf bereits früher hingewiesen wurde (WENK und TROMMSDORFF 1965). Im Bereich des Binnatales ist die Paragenese Tremolit-Calcit durch mehrere Fundpunkte gut belegt. Wir müssen auch in diesem Gebiet einen steilen, stoffdiskordanten Verlauf der Isograden annehmen, gegen E zu; besonders im Bereich des Gotthardmassiv-Südrandes ist dies weniger deutlich. Während der Tremolit-Calcit-Isograd in den Tessineralpen einen ähnlichen Verlauf zeigt, wie die Grenze des ersten Auftretens von Staurolith und Disthen, finden wir im E völlig andere Verhältnisse: Tremolit umfasst das ganze Bergell, Staurolith und Disthen scheinen auf das Gebiet des Meratales beschränkt zu sein.

Verschiedene Gründe haben uns dazu geführt, das Bergell mit in die Verteilungsanalysen einzubeziehen. Einmal müssen wir, wie WENK schon 1956 deutlich darlegte, die Ereignisse der Granitintrusion, der Migmatisierung und der regionalen Metamorphose, ausgehend vom Gebiet der Valle della Mera, als genetisch miteinander verknüpft ansehen. Zum anderen besitzt das westliche und südliche Bergell lepontinischen Baustil, die linearen und planaren Parallelstrukturen gehen kontinuierlich in das Tessiner Muster über (WENK 1956). Es ist weiter besonders bemerkenswert, dass wir uns, je weiter wir vom Lepontin gegen das Bergell vordringen, sukzessive aus dem Bereich tiefgelegener Regionalmetamorphose in ein Gebiet seichter Kontaktmetamorphose begeben, ohne dass wir eine scharfe Trennlinie ziehen können. Auch im N und E des Bergell verlaufen die Isograden diskordant zum "Deckenbau", ein Merkmal, das

hier wie im Simplon, die Vorstellung eines lepontinischen Wärmeherdes im Untergrund plausibel macht. Soweit es sich aus den bisher bekannten Zonen, den Isograden und aus der Verbreitung diskordanten, granitoiden Mobilisates (vgl. WENK 1966) ableiten lässt, nimmt die maximale, bei der Metamorphose erreichte Temperatur im Profil Bergell-Simplon von E gegen W zu mehr und mehr ab. Umgekehrt müssen die Drucke bei der Metamorphose westlich des Lepontins wesentlich höher gewesen sein als im Osten; jedoch scheinen uns genauere Angaben beim heutigen Stand des Wissens um die Druckabhängigkeit verschiedener Mineralreaktionen zu gewagt. Wir notieren in diesem Zusammenhang die Anwesenheit von alpinem Wollanstonit und Cordierit im Meratal (vgl. Fig. 7).

Fig. 7. Übersicht zu einigen Mineral- und Mineralparagenesezonen in den Lepontinischen Alpen. Zusammengestellt unter Verwendung der Daten von E. WENK (1962), E. NIGGLI (1960) und E. und C. NIGGLI (1965). Die Grenzen dienen zur Veranschaulichung der Situation und sind approximativ.

Rechnen wir mit Drucken von einigen (3-5) kb, so markiert der Diopsid-Calcit Isograd Temperaturen zwischen 570° und 620°. Diese Temperaturen wurden postkinematisch erreicht, die Kristallisation hat die Bewegungen überdauert. E. WENK hat nun im Laufe der letzten 20 Jahre zeigen können, dass nicht nur die Kristallisation, sondern auch die mechanischen linearen und planaren Parallelstrukturen in der lepontinischen Region jung sind und dass wir dieses Gebiet nicht mehr als alten Sockel, sondern als junges alpines Gebirge sehen müssen (1943, 1955, 1956, 1962, 1966). Dieses Gebirge verdankt also seine Prägung einer intensiven Durchbewegung alpinen Alters, die in eine thermische Phase mit weitgehender Neukristallisation und gebietsweise partieller, spät- bis postkinematischer Anatexis übergeht.

Betrachten wir nun in diesem Gebiet den Verlauf unseres Diopsid-Calcit Isogrades, so ergeben sich einige Folgerungen von beträchtlichem Interesse⁹). Unsere Grenze umhüllt konkordant den Bergeller Granit, sie zeigt ebenso wie dieser diskordantes Verhalten gegenüber den Deckenkörpern Tambo und Suretta. Im Gebiet der Valle della Mera liegen die jungen Gneissmassen von Novate-Mezzola innerhalb des Diopsidfeldes, aber gegen W werden die Gneisskörper der Lepontinischen Region darunter die mächtigen Massen des Leventinagneisses und des Cocco-Matorello-Quarzdiorites - diskordant von der Diopsidgrenze durchschnitten. Die Homogenisierung dieser Körper und die damit verbundene Migmatisierung müssen also älter sein, als die Phase maximaler Temperatur in dem - strukturell fertigen - Gebirge. Eine in situ-Granitisation und Homogenisierung einer abgescherten Sockelpartie, wie sie GÜNTHERT (1954) für den Matorellokörper annimmt, erscheint uns auf Grund dieser Befunde ausgeschlossen. Homogenisierung und Migmatisierung dieser Körper muss in einem anderen Niveau geschehen sein, wir müssen diese Vorgänge streng trennen von der thermischen Phase, die im Inneren des Diopsidfeldes - zu den Parallelstrukturen diskordantes - granitoides Mobilisat erzeugte.

Da Cocco- und Matorellokörper in die alpinen Strukturen miteinbezogen sind, da sie aber heute in Gebieten deutlich verschiedener Intensität der Metamorphose liegen, da wir in beiden Körpern dieselben Gesteine und dieselben Migmatite beobachten können, müssen wir annehmen, dass ihre Homogenisierung vor-, vielleicht syntektonisch erfolgte — in einer thermischen Phase, deren Alter unbekannt ist. Die jüngste Wärmefront, die unsere Isograde prägte, müssen wir verantwortlich machen für die postkinematischen granoblastischen Korngefüge dieser Körper. Anders als im Bergell sind wir m. E. nicht in der Lage, die Migmatitbildung im Cocco- und Matorellogneiss in einen direkten Zusammenhang mit der Kristallisation zu bringen. Zur Zeit dieser Migmatisierung kann, zum Beispiel, der Matorellokörper sich nicht in der Nähe der Dolomitgesteine seiner heutigen Hülle befunden haben, denn diese auf Temperaturänderungen so empfindlichen Gesteine sind relativ wenig metamorph.

⁹) Wir legen Wert auf die Feststellung, dass unsere Isograden nichts mit Isochronen zu tun haben (vgl. E. JÄGER, E. NIGGLI und E. WENK 1967).

Zu ähnlichen Schlüssen kommen wir in bezug auf den Leventinagneiss, dessen obere Partie in einem Gebiet weitaus geringerer alpiner Metamorphose liegt als die Massen der Riviera. Dagegen gibt uns der Verlauf des Diopsid-Calcit-Isogrades keine Argumente bezüglich südlicher gelegener, von ihm umfasster Gneissmassen wie diejenigen des Verzasca- und Vogornogneisses und der jungen lepontinischen Gneisse der Valle della Mera.

Soweit es sich aus Experimenten und Naturbeobachtungen ableiten lässt, dürfen wir mit Beginn der Diopsid-Calcitzone auch mit dem Beginn anatektischer Vorgänge rechnen, wenn wir nur den Faktor Temperatur betrachten und die Zeit — als Unbekannte — ausser Betracht lassen. Unsere Grenze markiert — vorsichtig beurteilt — Temperaturen nahe 600°, was unter bestimmten Bedingungen auch in "nicht geologischen Zeiträumen" zu beginnender Bildung granitoiden Mobilisates reicht (vgl. von PLATEN, 1965).

V. Bemerkungen zur Mineralfazies

Versuchen wir, unsere Übersicht Fig. 7 in eines der in jüngerer Zeit publizierten Faziesschemata einzuordnen, so müssen wir feststellen, dass diese Schemata vorwiegend auf der Metamorphose von Alumosilikatgesteinen beruhen und dass bis heute in Gebieten mit tieferer Regionalmetamorphose detaillierte Untersuchungen über die Verteilung von Paragenesen karbonatischer Gesteine fehlen.

Neuerdings hat WINKLER (1965), basierend auf einer Reihe von Experimenten, eine Korrelation beider Abfolgen versucht. Er hat die Grenze des ersten Auftretens von Diopsid als Marke für den Beginn der Amphibolitfazies charakterisiert, die definitionsgemäss auch durch die Grenze Staurolith/Chloritoid gekennzeichnet ist. In unserem Beispiel fällt die letztgenannte Grenze mit derjenigen von Dolomit + Quarz/Tremolit + Calcit zusammen, die nach WINKLER die Grünschieferfazies charakterisiert. Das Schema in WINKLER (1965) ist demnach nicht auf unser Beispiel anwendbar. Unsere Abfolge (Fig. 7) gilt zumindest im W des Gebietes für Drucke von einigen kb.

Wir vermerken in diesem Zusammenhang, dass es offenbar bis heute nicht möglich war, ein allgemeingültiges Schema von Mineralabfolgen im p-T-Diagramm der Metamorphose zu konstruieren, wohl auch ein Beweis für den Mangel detaillierter regionaler Verteilungsanalysen. Da wir in der Natur mit sehr vielen Unbekannten rechnen müssen, bleibt es zweifelhaft, ob es jemals gelingen wird, ein solches Schema zu erstellen. Unsere Aufgabe besteht demnach zunächst im Sammeln weiterer Daten.

ANHANG

Tabellarische Übersicht der Marmor-Vorkommen

Kolonne 1 Die laufende Nr. entspricht derjenigen auf den Verteilungskarten. Die Ziffern sind nach steigender Metamorphose geordnet (Skapolith ausgenommen).

Nr. 1-100 Paragenesen mit Tremolit.

Nr. 101-250 Paragenesen mit Diopsid.

Nr. 251-300 Paragenesen mit Forsterit.

Nr. 301-400 Paragenesen mit Wollastonit.

Nr. 400-500 Paragenesen mit Skapolith.

- Kolonne 2 Bezeichnung der im mineralogischen Institut Basel deponierten Probe(n). Fehlt diese Bezeichnung, so handelt es sich um ein Literaturzitat (vgl. Kolonne 6), oder um eine Probe, von der kein Dünnschliff angefertigt wurde.
- Kol. 3+4 Koordinaten des Fundpunktes (Schweizer Netz), Fundort.

Kolonne 5 Angabe der Paragenese; Eichpunkte (reine Paragenesen) kursiv, z. B. 2a.

Kolonne 6 Es erweist sich in der Praxis oft als schwierig, einen kurzen, charakteristischen Gesteinsnamen zu geben, da viele der Gesteine gebändert sind. In derartigen Fällen ist angegeben, ob es sich um einen Marmor oder Kalksilikatfels handelt, die Minerale, die Hauptgemengteil sein können, werden aufgezählt. Wurde ein Gesteinsname gegeben, so enthält er die wichtigsten Gemengteile in umgekehrter Reihenfolge ihrer relativen Häufigkeit. Weitere wichtige Gemengteile sind ebenfalls verzeichnet. Aus der Literatur zitierte Paragenesen, von denen kein Untersuchungsmaterial zur Verfügung stand, enthalten keine weiteren Angaben.

Abkürzungen

Akt	Aktinolith	Klh	Klinohumit
\mathbf{Ank}	Ankerit	Kle .	Klinochlor
\mathbf{Ant}	Antigorit	Klz	Klinozoisit
Bi	Biotit	Ms	Muskowit
\mathbf{Ce}	Calcit	Parg	Pargasit
\mathbf{Cho}	Chondrodit	Phl	Phlogopit
Di	Diopsid	Plag	Plagioklas
Do	Dolomit	Q	Quarz
$\mathbf{E}\mathbf{p}$	Epidot	\mathbf{Ru}	Rutil
Fo	Forsterit	\mathbf{Sk}	Skapolith
$2 \mathrm{Gli}$	Zweiglimmer, verwendet bei Gneissen und	\mathbf{Sp}	Spinell
	Schiefern mit gleichen Anteilen hellen und	\mathbf{Tit}	Titanit
	dunklen Glimmers	Tm	Turmalin
\mathbf{Gr}	Granat (grossularreich)	\mathbf{Tr}	Tremolit (Grammatit)
Hgl	Hellglimmer	Ves	Vesuvian
Ho	Hornblende, grün	Wo	Wollastonit
$\mathbf{K}\mathbf{f}$	Alkalifeldspat	Zo	Zoisit

Kolonne 5 Literaturangaben beziehen sich auf Beschreibung der Marmorvorkommen oder der Ca- und Mg-Minerale daraus.

•

Nr.	Probe	Koord.	Fundpunkt	Paragenese	Gestein	Literatur
1	4800 S.P.	655.2/120.8	Simplontunnel	2 b	Tr-Cc-Do-marmor	PREISWERK (1913)
2	JA 545	655.6/122.8	NW Nembro	26	Tr-Ce-Do-marmor	
3	JA 541	655 /120	NE Pta. Valgrande	2 b	Tr-Cc-Do-marmor	
4		657.6/120.3	M. Teggiolo	2 b	Tr-Ce-Do-marmor	
5	Varzo 14	660.2/119.9	N Trasquera	2 b	Tr-Cc-Do-marmor Plag, Phl.	
6	1	666 /112.5	NE Enso	26	Tr-Ce-Do-marmor Phl	CINQUE (1939)
7	S.P. II, 83	669 /120.5	Malioggio	26	Phl-Tr-Ce-Do-marmor	CASTIGLIONI (1956)
8	Jo 439a	669.8/132.2	WNW A. di Vova	2a, b	Tr-Q-Cc-marmor Do Phl	
9		667 /123.3	SW Baceno	2 b	Tr-Do-Cc-marmor	CASTIGLIONI (1956)
10		670.3/125.8	N Piedilago	2 b	Tr-Do-Ce-marmor	
11	Jo 433 b	669.2/132.2	SW Bocch. della Va	lle 2 b	Phl-Tr-Cc-Do-marmor	
12	Jo 135 b	671.4/136.7	E Lago Vannino	2 b	Tr-Phl-Do-marmor	
13	Jo 491 b	675.8/135.5	S Valdo	2 b	Phl-Tr-Cc-Do-marmor Sk	PREISWERK (1917)
14		665.3/136.8	W Ofenhoru	26	Tr-Cc-Do-marmor	GRAESER (1966)
15		664.4/136.1	Balmen	2 b	Tr-Cc-Do-marmor	GRAESER (1966)
16		666.4/138.5	W Tälligletscher	2 b	Tr-Cc-Do-marmor	
17	HA 194	670.4/141.2	W Corno di Ban	26	Tr-Ce-Do-marmor	
18	Wi 397	674.4/122.7	Alpe Lago, Valle d'Isorno	2 b	Tr-Ce-Do-marmor	
19	Wi 403	675.7/119.2	E Alpe Pisaro	2a	Tr-Q-Cc-marmor	WIELAND (1966)
20	Gr Gt 588	680 /124	Alpe Sfille	26	Tr-Ce-Do-marmor).
21	OG 808	680.1/129	Schwarzenbrunnen b. Bosco	2 b	Tr-Cc-Do-marmor Cc Bi Q Sk Ep Zo Plag Phl	GRÜTTER (1929)
22	Gr Hd 196	683.3/128.9	E Bombogno	26	Tr-Cc-Do-marmor Phl	
23	OG 394	678 /131	Martschenspitz	25	Phl-Tr-Ce-Do-marmor	GRÜTTER (1929)
24	Toce 32	678.7/132.5	SW Wandfluhhorn	2 b	Tr-Phl-Ce-Do-marmor Tit Plag	
25	Bur	680.9/139.8	Val Antabbia	26	Tr-Cc-Do-marmor	BURCKHARDT (1942)
26	Bur 284	682.7/141	W Campo Bavona	26	Tr-Cc-Do-marmor	BURCKHARDT (1942)
27	Gü 91	686.3/141.2	NW Pizzo Castello	2a	Q-Tr-Cc-marmor	
28	Gü	688.9/142.6	Gheiba	2a	Q-Tr-Cc-marmor	GÜNTHERT (1954)
29	HP 66	685.5/148	S Passo di Naret	2 b	Phl-Do-marmor Tr, Ce	
30	Vz 358	700.1/141.3	N P. Barone	2 b	Tr-Cc-Do-marmor Ank	
31	HP 313	694.5/142.7	SE Mogno	26	Tr-Cc-Do-marmor	
32	TV C 1	696.1/146.3	Pianascio	2 b	Tr-Cc-Do-marmor	HASLER (1949)
33	TV C 2	697.2/148.8	Passo Campolungo	26	Tr-Cc-Do-marmor	GÜBELIN (1939)
34	TV C 3	699.1/147.7	E Passo Cadonighin	o 2b	Tr-Cc-Do-marmor Tc	
35	TV C 4	701.3/146.8	E Alpe Cadonigho	26	Tr-Cc-Do-marmor	
36	HP 281	701.6/146.7	E Val Piumogna	$2\mathrm{a}$	Q-Tr-Cc-marmor Sk Phl Plag	
37	Hr 714	697.2/148.2	Val Barbughera	26	Tr-Cc-Do-marmor	
38	HP 273	699.4/149.5	W Rodi	26	Tr-Cc-Do-marmor	2 5
39	HP 266	701.0/148.9	Prato Dalpe	26	Tr-Cc-Do-marmor	
40	HP 251	704.3/147.4	Strasse Faido-Dalpe	2 b	Tr-Cc-Do-marmor	9
41	<u> </u>	702.3/154.9	Passo Corombe	$2\mathrm{b}$	Tr-Cc-Do-marmor	BOSSARD (1929)
42	TV M 4	708.2/147.7	Aldescio	2b	Tr-Cc-Do-marmor Ms	
43	TV 4	709.5/150.8	N Pizzo Molare	26	Tr-Cc-Do-marmor Phl	-
44		711.3/153.9	Camperio	2 b	Tr-Cc-Do-marmor	P. NIGGLI (1930)
45		718.2/152.2	SW Alpe Bresciana	2b ?	Cc-Do-marmor, Ms, Phl, Tit, Tr, Q	EGTI (1966)
46	TV VM 8	720.3/148.9	NW Alpe Guarnaio	2 b	Ms-Cc-Do-marmor Tr	
47	Blen 40	724.1/135.6	Alpe di Cava	26	Tr-Cc-Do-marmor	
48	Cal 20 a	731.6/136	SE Rossa	26	Phl-Tr-Cc-Do-marmor	
49	Cal 24	731.9/124.1	S Sta. Maria	2b	Phl-Tr-Cc-Do-marmor	KÜNDIG (1926)

 $\mathbf{450}$

Nr.	Probe	Koord.	Fundpunkt	Paragenese	Gestein	Literatur
50 51	Cal 1b Vz 480a	134.8/732.0 707.5/133.5	Fil di Calvarese Val d'Efra	2a 2 b	Tr-Q-Cc-marmor Tr-Cc-Do-Ank-marmor	Kündig (1926)
52	${ m SPL} \ 107$	653.7/107.2	V. Bognanco	2 b	Ms Cm Akt-Klz-Cc-Ank-fels Tit, Ho, Plag	
53		714.8/153.8	Olivone	$2 \mathrm{b}$	Tr-Ce-Do-marmor	Bossard (1929)
54		713.4/143.4	Salvascio	2 b	Tr-Ce-Do-marmor	Bossard (1929)
55	Gr Gt 74	686.0/128.8	Cerentino, Collinaso	ea 2a, 2b	Tr-Cc-Do-marmor Phl, Q	GRÜTTER (1929)
56	Gr Gt 41	682.2/131.4	Wolfstafel 1950 m	2 b	Tr-Do-Cc-marmor Phl, Tc	GRÜTTER (1929)
57	TV 307	663.2/126.8	SW Goglio Fallstüc	k 2b	Tr-Cc-Do marmor	
58	TV 308	668.0/132.5	SE Alpe la Scatta	$2\mathrm{b}$	Tr-Cc-Do-marmor	
59	TV 309	666.5/136.7	SE Albrumpass	25	Tr-Cc-Do-marmor	
60	TV 310	669.6/139.5	E Hohsandgletsche	r 2b	Tr-Cc-Do-marmor	
61	TV 311	677.3/142.3	E Kastelsee	2 b	Tr-Cc-Do-marmor	
69	TV 319	670 5/124 8	SW Lago Busin	2 h	Tr-Ce-Do-marmor	
02	1 V 512	070.5/124.8	SW Lago Dushi	20	II of Do marmor	u.
101	OG 966	682.0/124.7	Val Arnau	3a.b	Di-Tr-Q-Cc-marmor	
102	Gr Hd 73	685.6/127.6	Dall'ovi, Collinasca	3a, b	Di-Tr-Cc-marmor, ge- bändert mit Plag, Tit,	
103	HuSt 336a	687.5/126.1	Alpe Sascola	3b	Di-Tr-Cc-marmorband in Kalksilikatfels Ho,	
104	HuSt,	683.2/121.65	Alpe Casone	3a	Marmor mit Ce, Di,	
105	Cas I a Pk 700	681.9/110.7	W Eglio	3 b	Cc-Marmor, gebändert,	KNUP (1958)
106	Pk 733	682.2/111.4	ESE Il Cedo	3 a	Sk, Di, Ep, IT, Q, Plag Sk-Di-Ep-Ho-Q-Plag-	KNUP (1958)
107	Pk 755	683.8/113.7	S Pizzo Formalone	3a	Marmorbänder: Cc, Sk, Di En Plag Ho	KNUP (1958)
108	Pk G 2	685.6/113.6	Alpe Canci	3a	Plag-Ho-Di-Q-Sk-Cc-	KNUP (1958)
109	Pk 452	685.1/113.0	Val degli Orti	3 a	Sk-Di-Ho-Plag-Q-Cc-	KNUP (1958)
110	Crav 5	681.7/123.2	SW Passo Pianasci	o 3b	Di-Tr-Cc-marmor, Tit,	
111	HP 380	683.7/123.5	Pizzo di Cerenello	3a	Di-Q-Cc-marmor, Tit,	
112	Verg 5, 6, 9	690. 5/ 119.9	S Gresso	3a	Do-Cc-Marmore mit Phl, Di, Sk, Plag, Tit,	Кове (1956)
113	HuSt 857	690.7/119.9	S Gresso	3a	Di-Ep-Plag-Q-Ce-	Kobe (1956)
114	Verg 8a, b	694.5/118.7	N Berzona	3 a	Tit-Ho-Di-Cc-Q-Plag-	Kobe (1956)
115	Co 15	696.1/133.2	Val Cocco	3a	Cc-Di-fels, Ep, Gr, Ves. Q	
116	Vz 419	700.5/129.6	Valle d'Osola Bloc	z 3a	Tit-Di-Ho-Q-Ce-marmor	•
117	72 117 Va 507	700 0/190 7	Valla d'Ocola Blas	- 9a 2a	gehänderter Calcitmar-	
117	¥2 JUI	100.0/120.1	vane u Osola Dioci	s ~u, ou, 9k	mon Tit En O Tr Di	
118	Vz 598	702.3/128.9	Bolastro	30 3a. 3h	Calcitmarmorband Q.	
110	Vz 5090 ~	719 1/194 0	Val Carecchio	9a, 99	Plag, Tr, Di Kalksilikattols Sk. Di	
119	vz Jesa-g	114.1/144.0	val Caleconio	งฉ	Q. Plag. Tr. Cc	

Nr.	Probe	Koord.	Fundpunkt	Par	agenese	Gestein	Literatur
120	Riv 10a	716.1/125.5	Val Lodrino		3a	Di-Plag-Q-Calcitmar-	
121	Vz 416	715.8/123.0	Val di Moleno		3a	Di-Ep-Ho-Plag-Q-Cc- fels	2
122	Vz 622a-g	706.2/116.7	Monte Romerio		3a, 3b	Marmore mit Cc. u. Do, Di O Tr Sk Ho Tit	FORSTER (1949)
123	Vz 626	706.9/116.1	Navegnaschlucht		3a	Sk-Plag-Q-Di-Cc- marmor. Ho. Tit	FORSTER (1949)
124	Vz 623	702.3/116.2	Vallone		3a	Q-Di-Cc-marmor, Sk, Tit. Ho. Plag	FORSTER (1949)
125	Vz 624	705.6/116.4	Monte Cordonico		3a	Kalksilikatfels Di, Plag, Ho, Gr, Cc, Q, Sk Klz	FORSTER (1949)
126		702 7/117 2	Valle dei Croadi		3.0	Di-Sk-marmor	FORSTER (1919)
127	Vz 625	696.4/115.2	Riale Mulini		3a	Cc-marmor, Tr, Sk, Tit, Plag Klz Di	KERN (1947)
128	Vz 375, 405	708.9/115.9	N Gordola		3a	Cc-marmore Bi, Di, Sk, Q, Plag, Kf	
129	Vz 444, 458, 467	708.6/117.1	Strasse Contra- Mergoscia		3a, 3b	Calcitmarmore Tit, Sk, Kf, Plag. Tr. Di, Ep	
130	Wurz 120b	712.7/116.2	Strasse Cugnasco-		3 a , 3b	Phl-Ms-Sk-Tr-Di-Q-	
131	Wurz 119	712.1/116.1	Monti di Ditto		3a	Ms-Bi-Sk-Di-Plag-Q-	
132	Wurz 118c	718.9/116.9	Val Sementina		3a	Q-Pl-Di-Ho-Sk-Cc-	MITTELHOLZER (1936)
133	Wurz 117a	719.8/116.5	Val Sementina		3a	marmor Phl-Di-Plag-Q-Cc- marmor	MITTELHOLZER (1936)
134	Wurz 111a	723.5/117.4	E Daro		3a	Klz-Q-Bi-Sk-Di-Pl-Cc-	
135	Wurz 115	724.1/117.0	W Monte della Cro	ce	3a, b	Cc-marmor, Sk, Q, Tr, Bi, Ms. Di, Plag	
136	Wurz 121	725 /119	Val Traversagna		3a	Cc-marmore, Phl, Sk, Plag, Di, Tr, Q, Kf	MITTELHOLZER (1936)
137	Wurz 71–106	701.9/101.3	Gnosca		3a, b	Calcitmarmore, Di, Sk, Plag, Bi, Ms, Phl, Q, Tr. Gr.	MITTELHOLZER (1936)
138	Riv 11b	722.6/120.3	S. Carpoforo b. Gorduno		3a, b	Pl-Di-Ho-Sk-Cc- marmor	MITTELHOLZER (1936)
139	Mis 34 Wurz 104–1	723.9/120.9 09	Castione		3a, b	Calcitmarmore	MITTELHOLZER (1936)
	TV Cast 1-6						
140	Riv 4	723.0/123.9	E Claro		3a, b	Kalksilikatfels Ves, Gr, Klz, Ep, Di, Cc, Wo (vgl. Fussnote 7), gebändert.	Casasopra (1939) Taddei (1937)
141	TV 115	720.4/128.3	Pizzo Claro		3a, b	Sk-Plag-Ms-Bi-Q-Cc-	STRASSER (1928)
142	Cal 12, 13	725.5/129.4	SW Mottone		3b	Phl-Di-Tr-Plag-Cc-Do- marmor	STRASSER (1928)
143		718.4/134.7	Biasca Stazione		3 b	Kalksilikatlinsen	CASASOPRA (1939)
144	-	716.6/136.0	E Pollegio		3 b	Kalksilikatlinsen	CASASOPRA (1939)
145	Fk Grono 3	729.8/124.1	NE Giova		3a	Plag-Cc-Q-Di-fels, Zo,	KELLER (1964)
146	Vz 458	711.4/120.8	SW Pizzo Vogorno		3 b	Ho-Ep-Di-Cc-marmor, Sk Plag	u.
147	Vz 497	708.2/116.1	N Contra		3a, b	Klz-Sk-Q-Tr-Di-Cc- marmor	

Nr.	Probe	Koord.	Fundpunkt	Paragenese	Gestein	Literatur
148			1			
149	Wurz 67a, b, c	731.3/120.3	Strasse Roveredo- Monti Laura	3a	Tit-Plag-Di-Sk-Q-Cc- marmor	KNOBLAUCH und REINHARD (1939)
150	Wurz 67f,	730.5/119.9	Strasse Roveredo- Monti Laura	3a	Sk-Di-Plag-Q-Ep-Cc- marmor	KNOBLAUCH und REINHARD (1939)
151	Wurz 67m	728.9/119.4	Strasse Roveredo- Monti Laura	3a	Sk-Di-Q-Cc-marmor	KNOBLAUCH und REINHARD (1939)
152	Wurz 67q ₁ , a.	729.9/117.8	Strasse Biscia- Monti Leura	3 a	Sk-Di-Q-Cc-marmor	KNOBLAUCH und BEINHARD (1939)
153	Fum 153	737.6/117.8	SE Cima dello Stag	n 3a	Tit-Ms-Di-Ho-Sk-Q- Ce-marmor	
154	Fum 430	738.0/117.4	Valle del Dosso	3 a	Di-Tr-Sk-Phl-Plag-Q-	
155	Fum 451	740.0/117.0	S Dosso bello	3 b	Plag-Bi-Ms-Kf-Tr-Di-	
156	Fum 555	741.1/117.2	Val d'Inferno	3 a	Tit-Sk-Tr-Di-Bi-Ms-	
157	Fum 464	742.5/117.3	Val Piana	3 a	Bi-Pl-Di-Sk-Q-Cc-	
158	Fum 510	741.6/115.6	Val d'Inferno	3a	Di-Q-Cc-marmor, Plag, Sk. Ho	
159	Fum 426	744.6/117.2	Valle di Livo	3 a	Di-Plag-Q-Cc-marmor	
160	Wurz 114b	744.0/117.2	Valle di Livo	3a -	Plag-Di-Ce-marmor, Q. Bi	
161	Els 430	747.7/118.1	Val San Vicenzo	3a	Di-Tr-Plag-Sk-Q-Cc- marmor	
162	Wurz 127	725.8/116.6	Arbino	3 b	Di-Tr-Cc-fels	
163	Wurz 126	731 /116.4	E Corno di Gesero	36	Cc-Tr-Diopsidfels	
164	Bl 1623	741.2/120.7	oberes Val di Daren	go 3a	Plag-Di-Sk-Cc-mar- mor Kf	BLATTNER (1965)
165	Hänny 73a. c	740.2/121.3	SE Pizzo Martello	3a	Di-Q-Cc-marmor, Pl, Sk. Tr	
166	Els 380, 393	753.7/118.4	Albonico	3a	Di-Q-Cc-marmor, Plag, Ep. Sk	
167	Mera 26a, b	752.3/126.6	E Motto dell'Orso	3a	Plag-Cc-Di-fels in Q- Di-Plag-Ho-Cc-schiefer	Repossi (1916)
168	Mera 23a	750.3/128.9	Capella di Pizzo	3a	Marmor mit Cc, Ho, En Di O Sk Plag	
169	Bl 824	751.4/129	SW Stoveno	3a	Q-Cc-marmor, Di, Plag, Phl, Tit, Sk	
170		734.0/125.6	Steinbruch Cama	3a	Marmore mit Q, Di, Cc	BRUGGMANN (1965)
171	·	736.0/125.5	Promegn, Val Cama	3a, b	Marmore mit Di, Tr, Cc, Q, Sk	Bruggmann (1965)
172		734.3/123.4	Val Leggia	3a	Marmore mit Di, Q, Cc. Sk	BRUGGMANN (1965)
173		735.3/121.1	Val Grono 1200 m	3 a	Marmore mit Di, Q, Cc. Sk	Bruggmann (1965)
174	8	736.8/119.5	N Cima dello Stagn	0 3a	Marmore mit Di, Q, Ce. Sk	BRUGGMANN (1965)
175		737.1/123.2	Grenzgrat Val Legg Val Cama	ia/ 3a, b	Marmore mit Tr, Di, Ce, O. Sk	Bruggmann (1965)
176	Mis 44	726.1/121.5	Monticello, Misox	3a	Calcitschiefer mit Di, Sk, Q, Tit, Plag, Phl, Ho, Tm, Gr, Kf, Erz	
177	Re 294f	671.3/107.3	Riale Margologgio	3a	Q-Cc-Ep-Ho-Di-fels	
178	Mad Scal 1 b	700.2/116	Madonna Scalate Verscio	3 b	Ho-Di-Plag-Cc-fels Tit, Phl, Klc, Tr, Klz	

.

Nr.	Probe	Koord.	Fundpunkt	Paragenese	Gestein	Literatur
179	Wurz 128	725.2/119.1	Val d'Arbedo	3 b	Phl-Tr-Cc-Do-mar- more, Di, Sk	KNOBLAUCH und REINHARD (1939)
181	Sci 12	768.8/125.9	Bocc. Sceroia	3 a	Plag-Gr-Sk-Di-fels, Cc, Klz, Q	
951	Arnen 15	683 9/194 7	Alne Arnau	4a h c	Kle-Tr-Di-Fo-Klb-Ce-	WENK (1963)
201		000.2/121.1		10,0,0	Do-marmor	
252	OG 1039, 1037	684.5/125.0	Alpe Grippia	4a, b, c	Fo-Di-Ce-Do-marmor, Tr, Klc, Cho, Klh	
253	OG 832	686.4/126.9	Alpe Orsalia	4a,b,c	Di-Tr-Klc-Fo-Cho-Cc- Do-marmor Ant Phl	
254	OG 1133, 1134	688 /127	Alpe Sascola	4a, b, c	Tr-Di-Fo-Ce-Do-mar- mor, Klc, Ant, Cho	
255	Verg 4	683.3/121.4	Alpe Casone	4a, c	Klc-Di-Klh-Fo-Cc- marmor, Do	WENK (1963)
256	Pk 473a	687.8/122.7	Ribellasca	4a, b, c	Klc-Di-Tr-Fo-Klh-Cc- Do-marmor	KNUP (1958)
257	Sp 343 TV 200 a-k	694.0/126.0	Dall'Ovich, Someo	3a,b 4a,b,c	Cc u. Do-marmore mit Sk, Kle, Phl, Zo, Klz, Klh, Sp, Cho, Tr, Di, O, Plag etc.	TROMMSDORFF (1966)
258	TV 202 a-d	694.1/127.3	Rebberge Someo	3a,b,c, 4a	Cc u. Do-marmore mit Ant, Klc, Fo, Sk, Tr, Di O. Klz, Bhl etc.	
259	Vz 480	706.0/132.5	Val d'Efra	3a, b, c	Fo-Di-Tr-Cho-Cc-Do-	
260	Vz481a-m	705.6/133.5	Serte E Frasco	3b,	Cc-Do-marmore mit	WENK (1963)
				4a,b,c	Fo, Plag, Di, Tr, Ap Sk, Klh, Cho, Ant, Kla etc	TROMMSDORFF (1966)
261	Mera 24	755.4/116.2	E Brugo	4a,b,c, 5a,b	Marmore mit Cc, Do, Klh, Cho, Phl, Wo, Sk,	Repossi (1916)
262	 ,	758 /117.3	N Monte Basseta	4a, b, c	Marmore mit Cc, Do, Sk, Tr, Di, Fo, Klh,	Repossi (1916)
263	Mera 25	756.9/120.5	San Giogio di Nova	ate $4a, b, c$	Cho, Klc, Phl etc. wie 262	
264	Bl 3000	762.7/121.3	Capanna Volta	4a, b, c	Cc-Do-marmore mit Ant, Klc, Sp, Fo, Cho,	
265	Mas 8a, d	755 /122.3	Val Preda rossa	4 a	Fo-Ant-Cho-Cc-Do-	
266	Mal 40, 45a, u. a.	777.6/129.3	Moräne Disgrazia- gletscher	4a,b,c, 3a,b, 5a,b	Marmore mit Cc, Do, Tr, Di, Fo, Wo, Klh, Cho, Ant, Klc, Sp, Phl, Sk etc	WENK (1963)
267	Mal 54a	776.5/129.7	E Monte Sissone	4a, b, c	Sp-Fo-Klh-Cho-Kle- Phl-Ca-Do-marmor	
268	Brg 24	778.0/131.9	Cima di Vazzeda	4a, b, c	Ant-Fo-Di-Tr-Cc-	STAUB (1920)
269	Brg 23	775 /133.2	NE Fornohütte	4a, 3b	Klc-Phl-Klh-Cho-Fo- Cc-Do-marmor, Di,	
270	Fk 614	692.1/134.4	Mündung Val Cocc	4a,b,c	Tr, Plag Tr-Di-Cho-Fo-Cc-Do- marmor; Phl, Klc	
271	Sci —	764.6/130.4	N Pizzo Trubinasc	a 4a, b, c	Kalksilikatfelse mit Di, Fo, Tr, Klc, Cc, Dol	

454

×

Nr.	Probe	Koord.	Fundpunkt	Parage	nese	Gestein	Literatur
301	Dubino 2	755.4/116.2	E Brugo	5a	, b	Marmore, gebändert, Di Cr. Wo. O. Co	
309	Mera 24g Meg 9a.k	766 1/194 9	Bagni del Masino	39	40	Kalksilikatfelse Cc Fo	
304	mas Ja-K	100.1/124.2	Dagin der masino	5a 5a	, ±0 .b	Di. Sk. Plag. Ep. Gr. Sp	
	0			ou	,~	Parg. Ant. Wo	3
303	Mas 8b	775 /122.3	Preda rossa	5 b		Di-Wo-Ves-Gr-Cc-fels,	
		90 Sec. 2025. • 42-4011.060226455				Plag, Ru	
304	Mal 6	777.6/129.3	Moräne Disgrazia-	5 b		Wo-Ves-Gr-Di-Cc-fels	
			gletscher				
305	Brg 19	776 /133.7	Passo del Forno	5 a		gebänderter Kalksilikat	•
						fels, Q, Ce, Di, Gr, Tit,	
	-					Ho, Plag, Ep, Wo	
306	Brg 18	775.5/135.8	S Pizzo del Rossi	5a		gebänderter Kalksinkat	7
						Tels, Q, Cc, Dl, Gr, Tit,	
207	Dres 90	779 /1989	Lowingin Cruce	5 h		Vos-Gr-Di-Wo-fels	
901	brg 20	115 /150.5	Lavinair Cruse	50		Ce Tit	
308		772 5/137.4	Albignastollen	5.8	. h	00, 110	WEIBEL und LOCHER
000		11210/10111	m 4549	04	,~		(1964)
309	Sci 130	765.6/134.5	NW Bagni del Masi	no 5a	, <i>b</i> ,	Marmore mit Wo, Di,	en e
		is processes and second processes		3a		Plag, Sk, Cc	
Nr	Prohe	Koord	Fundpunkt		Gest	ein	Literatur
741.	TIODE	Roora.	Fundpunkt		GOSt	em -	Literatur
401	4922 S. P.	654.9/121	$\mathbf{Simplontunnel}$		Cc-E	p-2 Gli-Sk-Plag-gneiss	PREISWERK (1913)
							SPEZIA (1903)
402	Spl 84	655.9/121.3	Riale del Valle,		Kiz-	SK-Klc-Q-Cc-2Gli-	
109	Trance M	PPD 9/110 0	Cairasca		scnie	$\frac{1}{2}$	
403	varzo 7	660.2/119.9	Trasquara		anoie	e Sh	
404	Varzo 2	661 1/119.2	Val Cairasca		Sk-M	s, Sk s-Bi-Plag-Q-Cc-schiefer	
405	Varzo 27	661.3/118.3	NW Bertonio		Sk-P	lag-Phl-Cc-marmor	
406	Varzo 1	662.0/118.5	NW Varzo		Sk-M	s-Bi-Cc-schiefer, Plag	
407	Varzo 30	663.1/120.8	S Cistella		Bi-M	s-Plag-Sk-Q-Cc-marmor	
408	K 5	663.1/122.4	SSE Cistella		Sk-P	lag-Ms-Bi-Q-Cc-schiefer	MILNES (1964)
409	K 41	661.5/123.3	W Cistella		Sk-P	lag-Ms-Bi-Q-Do-Cc-	MILNES (1964)
		AND DESCRIPTION OF A DESCRIPTION OF A			schie	fer	
410	K 75	662.8/123.8	NNW Cistella		Sk-P	lag-Ms-Bi-Q-Cc-schiefer	MILNES (1964)
411	K 30	662.4/124.3	N Pizzo Diei		Plag	-SK-Q-MS-B1-D0-CC-	MILNES (1964)
410	Doc 19	669 5/196 D	Diala Fredda		Scme	ter ag-Sk-9 Gli-Co-schiofer	
412	Bac 18 Bog 17	664 4/194 3	Riale Freudo		Plag.	Sk-Akt-Ce-2 Gli-schie-	CASTIGLIONI (1956)
415	Dac II	004.4/124.5	that onendola		fer	ok fikt og 2 gil some	ONSTICUTORI (1990)
414	Bac 15a. c	666.3/124.1	Riale Ghendola		Tit-M	Is-Tm-Phl-Sk-Plag-Q-	CASTIGLIONI (1956)
	200 10 10	,,			Cc-fe	ls	noon a chois an chair a choise a choisean ann an thar ann ann an ann an ann an ann an tharrainn ann a 💌 ch
415	S.P. II. 78	669 /120.5	Maglioggio b. Cro	do	Sk-B	i-Q-Plag-Ms-Cc-schiefer	
416	S.P. II. 88	670.5/125	Piedilago		Plag	Klz-Gr-Q-Sk-Bi-Cc-	
					gneis	8	
417	SPL 50-53	662.9/113.0	Riale di Burro; A	lpe	Pl-Sl	x-2Gli-Q-Cc-schiefer	
10000	-		Ventina	•	DI		
418	To 23 b	667.2/113.4	SW Oira		Plag-	SK-2 Gli-Q-Cc-schieter	
419	To 62a	669.3/115.2	weg Alagna-Alpe		ZO-P	ag-5K-2 GII-Q-UC-	
100	To 64	670 7/119 9	Piazzeno-Larono		Tit-T	nor Plag-Co-Sk-2 Ali-schiofor	
421	TO 63	671.2/119.3	N Monte Larone		Plag.	2Gli-Sk-Q-Cc-schiefer	
422	Wi 212	670.1/112.1	Valle dell'Isorno		Tm-S	sk-Plag-2 Gli-Q-Cc-	WIELAND (1966)
					schie	fer	
423	Wi 279	671.4/111.9	W Cima la Sella		$\mathbf{Sk-2}$	Gli-Pl-Q-Cc-schiefer	WIELAND (1966)

 $\mathbf{455}$

.

Nr.	Probe	Koord.	Fundpunkt	Gestein	Literatur
424	Wi 249	671.9/113.0	N Cima la Sella	Ho-Ms-Sk-Q-Plag-Bi-Cc-	WIELAND (1966)
425	Wi 263	675 1/119 2	S Monte Navone	Plag-Sk-Ms-Bi-Ce-marmor	WIELAND (1966)
426	Wi 201	672 8/115 2	E Monte Navone	Plag-Sk-Ms-Bi-Co-schiefer	WIELAND (1966)
420	Wi 318	673 8/115 9	Alne Peiose	Plag-Sk-Mg-Bi-Co-schiefer	WIELAND (1966)
498	W1 310	674 7/116 8	S Cime di Cenorie	Sk-Plag-9 Gli-O-Co-schiefer	WIELAND (1966)
490	Wi 68h	675 6/110 1	Valle Agregino	Sk-Plag-2 Gli O. Co.schiefer	WIELAND (1966)
429	Isor 8	015.0/115.1	Valle Agrasmo	Sk-riag-2011-Q-00-semeler	WIELAND (1900)
430		664.5/136.2	Balmen	Sk in Dolomit	GRAESER (1965)
431	Isor 6	674.7/119.4	Valle Agrasino	Sk-Klz-Hgl-Bi-Plag-Q-Cc- marmor	
432	Wi 420/421	675.8/121.9	Alpe Matogno	Plag-2Gli-Q-Sk-Cc-schiefer	WIELAND (1966)
433	Wi 391	675.9/122.8	W Pizzo Lago Gelato	2 Gli-Sk-Plag-Q-Ank-Cc-	WIELAND (1966)
			-	marmor	. ,
434	Isor 29	674.3/122.3	Matogno	Zo-Sk-Plag-Ms-Cc-Bi-schiefer	
435	Wi 759b	673.1/123	S Pizzo del Forno	Ep-Sk-Plag-Q-Bi-Cc-schiefer	WIELAND (1966)
436	Hu 1223	672.5/122	SW Pizzo del Forno	Sk-Tit-erz-2 Gli-Plag-Q-Cc-	HUNZIKER (1966)
		,		gneiss	(,
437	Cray 11b	675.6/123.5	Alpe Bosa	Bi-Sk-Plag-Q-Cc-schiefer	
438	Gr Gt 591	680 /124	Alpe Sfille	Sk-Phl-Ank-Ce-Do-marmor	
439	Hu 504 c	676.5/126.1	Alne Stufa	Sk-2 Gli-Plag-Q-Cc-schiefer	HUNZIKER (1966)
100	iiu sore	010.0/120.1	Inpo Soula	Gr. Tm	H (1000)
440	Valdo	675.8/135.5	S Valdo	Sk-Cc-Do-marmor	PREISWERK (1917)
110	(und o	01010/10010			STELLA (1905)
441	Spl 111	672.2/133.1	W P. Martello	Kle-Bi-Ms-Sk-Plag-Cc-phyllit	
442	Spl 110	671.2/134.0	Lago Busin	Sk-Plag-Ms-Bi-Cc-schiefer	
443		665.2/136.8	Fuss Ofenhorn	Sk-Cc-Do	GRAESER (1965)
110	To 30	675 8/137 9	S Canza	Sk-Q-Plag-2 Gli-Co-marmor	
445	Mto 169	678.3/138.6	Alpe Tamier	Sk-2 Gli-Plag-Q-Co-marmor	
446	Mto 167	677.7/138.3	Alne Tamier	Sk-En-2 Gli-Plag-Q-Cc-schiefer	•
447	Mto 149	679.9/138.2	Val Antabbia	Sk-Plag-2 Gli-Q-Cc-schiefer	
448	Mto 159	681.2/138.7	Val Antabhia	2 Gli-Plag-Sk-Q-Cc-schiefer	
449	Bur 2a	682.3/145.5	Bohiei	Sk-Plag-En-Ms-Bi-Q-Cc-	BURCKHARDT (1942)
110	D u: 10	00000/11000		marmor	
450	Mto 528.	684.7/141.2	Alpe Sevinera	Sk-Plag-2 Gli-Q-Cc-schiefer	
200	Bur 281				
451	Mto 535	685.9/141.3	W Pizzo Castello	Ep-Q-Plag-Sk-Bi-Cc-schiefer	
452	Mto 559	686.5/141.1	Pizzo Castello	Ep-2 Gli-Sk-Plag-Q-Cc-marmo	e ·
453		688.8/142.6	Gheiba	Sk-Plag-Q-Cc	GÜNTHERT (1954)
454	Gü 156	684.7/151.4	Riale Fontana, Bedretto	Sp-Bi-Ms-Plag-Sk-Cc-marmor	
455	Bn 491	694.2/143.4	N Mogno	Sk-Ms-Plag-Bi-Q-Cc-schiefer	
456	TV 170	694.3/143.8	SE Fusio	Sk-Plag-Ms-Bi-Q-Cc-marmor	
457	Hr 447	694 /144.4	Albergo Nazionale	Zo-Plag-Ms-Bi-Sk-Cc-gneiss	
		to of the state and the	Fusio		
458	TV 156	695.4/146.8	E Lago Sambuco	Sk-Plag-2Gli-Q-Cc-schiefer	
459	Hr 470	695.5/146.7	S Pizzo Massari	Tit-Klz-2 Gli-Sk-Q-Cc-schiefer	HASLER (1949)
460	Hr 262	697.6/147.8	S Lago Tremorgio	Sk-Ep-2 Gli-Plag-Cc-schiefer	
461	HP 233	700.1/147.7	Riale Fog, Mascengo	Plag-Sk-2 Gli-Cc-schiefer	vgl. PREISWERK (1917)
462	HP 281	701.6/146.7	S Kapelle Val Piu-	Q-Hgl-Phl-Plag-Sk-Tr-Ce-	
		2	mogna	gneiss	
463	Bedr 34	692.5/151.7	SE Airolo, E Piotta	Sk-Ep-Plag-2 Gli-Q-Cc-schiefer	•
464	Tv 13, TV 2	709.3/149.7	N Pizzo Molare	Tm-Klz-Tit-2Gli-Sk-Plag-Q-	
	·· · · · · · · · · · · · · · · · · · ·	10 KG		Cc-schiefer	
465	HUST 733	682.7/126.5	SE Campo	Tit-2 Gli-Sk-Plag-Q-Cc-schiefer	:
466	OG 1066	684 /126.7	Valle di Campo b. Niva	2 Gli-Sk-Q-Plag-Kf-Cc-gneiss	
467	Gr Gt 812	680.1/129	Schwarzenbrunnen	Ep-Bi-Sk-Plag-Cc-schiefer	GRÜTTER (1929)
468	Vz 448	709.4/133.6	Cima d'Efra	Plag-Bi-Sk-Cc-gneiss, Gr-	
				Ms-Q-Tit	

456

•

.

Nr.	Probe	Koord.	Fundpunkt	Gestein	Literatur
469	Vz 262	710.4/129.2	S Alpe Lignasco	Ms-Sk-Bi-Plag-Q-Cc-schiefer	
470	Vz 610a-d	711.6/127.8	Alpweg Fumegna, Block	Cc-Marmore mit Tit, Sk, Ms, Bi Plag O	
471	TV VM 9	721.5/148.2	Alpe di Quarnaio	Ms-Kf-Q-Cc-Do-marmor mit S	k
472	Blen 39	724.1/135.5	Alpe Scengio	Sk-Plag-Cc-Bi-schiefer	
473	TV 93	722.6/133.7	E Cima Biasca	Sk-Plag-Q-Bi-Cc-schiefer	
474	Cal 20 c	731.6/136.0	SE Rossa	Phl-Cc-Do-marmor mit Sk	
475		755.4/116.2	E Brugo	"Wernerite" in Marmor	Repossi (1916)
476	Mal 9	777.6/129.3	Moräne Disgrazia-	Sk-Plag-Kf-Gr-Wo-Di-fels,	
			gletscher	Cc, Bi etc.	a.
477	<u> </u>	776.1/131.2	Cima di Vazzeda	Sk-Ce	STAUB (1920)
478		772.5/137.4	Albignastollen m 4302	Sk-Gr-Di-Wo-Pl-Q-Ep	WEIBEL und LOCHER (1954)
479	OG 854	668.8/122.6	Val Fiumegna	Bi-Klc-Kf-Q-Plag-Do-Cc- schiefer, Tr, Sk	
480		708.0/144.5	Steinbruch Lavorgo	Sk-Cc-marmor	
482		ca. 719/150.3	Val Soja	Dolomitmarmor, Q, Ms, Phl, Kf, Cc, Tm, Sk	EGLI (1966)

Literatur

SMPM = Schweiz. Mineralogische und Petrographische Mitteilungen

- ARTUS, F. (1959): Metamorphe Breccien basischer Gesteine im Granit des Bergeller Massivs. Hamburger Beitr. z. angew. Mineral. Kristallphysik u. Petrogenese 2, 1—39.
- BAMBAUER, H. U., BRUNNER, G. O. und LAVES, F. (1962): Wasserstoffgehalte in Quarzen aus Zerrklüften der Schweizer Alpen und die Deutung ihrer regionalen Abhängigkeit. SMPM 42, 221–236.
- BEARTH, P. (1958): Über einen Wechsel der Mineralfazies in der Wurzelzone des Penninikums. SMPM 38, 363-373.
- (1962): Versuch einer Gliederung alpinmetamorpher Serien in den Westalpen.
 SMPM 42, 127-137.
- (1965): Zur Entstehung alpinotyper Eklogite. SMPM 45, 179-188.
- BLATTNER, P. (1965): Ein anatektisches Gneissmassiv zwischen Valle Bodengo und Valle di Livo (Prov. Sondrio und Como). SMPM 45, 973-1072.
- BOSSARD, L. (1929): Petrographie der mesozoischen Gesteine im Gebiete der Tessiner Kulmination. SMPM 9, 107-159.
- BOWEN, N. L. (1940): Progressive metamorphism of siliceous limestone and dolomite. J. Geol. 48, 225-274.
- BRUGGMANN, H. O. (1965): Geologie und Petrographie des südlichen Misox. Diss. Univ. Zürich.
- BURCKHARDT, C. E. (1942): Geologie und Petrographie des Basodino-Gebietes (nordwestliches Tessin). SMPM 22, 101-186.
- CASASOPRA, S. (1939): Studio petrografico delle gneiss-granitico Leventina. SMPM 19, 451-709.
- CASTIGLIONI, G. B. (1956): Osservazioni geologico-petrografice della zona di Baceno e Premia in Val d'Ossola. Atti. Soc. Ital. Sc. nat. 95, 223-266.
- CHATTERJEE, N. D. (1961): The alpine metamorphism in the Simplon aerea, Switzerland and Italy. Geol. Rundsch. 51, 1-72.
- CINQUE, F. (1939): Il "Marmo di Crevola" ed i suoi minerali. Atti. Soc. Ital. Sc. nat. 78, 204–223.

- DAL VESCO, E. (1953): Genesi e metamorfosi delle rocce basiche e ultrabasiche nell'ambiente e mesozonale dell'orogene pennidico. SMPM 33, 177-480.
- VON ECKERMANN, H. (1950): A comparison between the parageneses of fennoscandian limestone contact minerals and those of the Alnö alkaline rocks associated with carbonates. Min. Mag. 29, 304—312.
- EGLI, W. (1966): Geologisch-petrographische Untersuchungen in der NW-Aduladecke und in der Sojaschuppe. Diss. ETH Zürich Nr. 3766.
- ENGEL, A. E. J. and ENGEL, C. G. (1953a): Greenville Series in the northwest Adirondack mountains. New York. I. Geol. Soc. Amer. Bull. 64, 1013-1097.
- (1953b): Compositional evolution of a major marble unit Greenville Series, northwest Adirondack mountains New York. Geol. Soc. Amer. Bull. 64, 1417-1418.
- ESKOLA, P. (1922): On contact phenomena between gneiss and limestone in western Massachusetts. J. Geol. 30, 265-294.
- FORSTER, R. (1947): Geologisch-petrographische Untersuchungen im Gebiete nördlich Locarno. SMPM 27, 251-471.
- GOLDSCHMIDT, V. M. (1912): Die Gesetze der Gesteinsmetamorphose mit Beispielen aus der Geologie des südlichen Norwegens. Kristiania Vidensk. Skr. I Math. natw. Kl, 22.
- GRAESER, ST. (1965): Die Mineralfundstellen im Dolomit des Binnatales. SMPM 45, 597-796.
- GREENWOOD, H. J. (1962): Metamorphic reactions involving two volatile components. Ann. Rep. of the Dir. of the Geophys. Lab. 61 (1961/62), 82-85.
- GRÜTTER, O. (1929): Petrographische und geologische Untersuchungen in der Region von Bosco (Valle Maggia), Tessin. Verh. Natf. Ges. Basel, 40.
- GÜBELIN, E. (1939): Die Mineralien im Dolomit von Campolungo (Tessin). SMPM 19, 325-442.
- GÜNTHERT, A. (1954): Beiträge zur Petrographie und Geologie des Maggia-Lappens (NW-Tessin). SMPM 34, 3-159.
- HARKER, A. (1904): Tertiary igneous rocks of Skye. Mem. geol. Surv. Untd. Kingdom, 1-451.
- HASLER, P. (1949): Geologie und Petrographie der Sambuco-Massari-Gebirgsgruppe zwischen der oberen Val Leventina und Valle Maggia im nördlichen Tessin. SMPM 29, 50-155.
- HUNZIKER, J. C. (1966): Zur Geologie und Geochemie des Gebietes zwischen Valle Antigorio (Prov. di Novara) und Valle di Campo (Kanton Tessin). SMPM 46, 473-552.
- JÄGER, E., NIGGLI, E. und WENK, E. (1967): Rb-Sr-Altersbestimmungen an Glimmern der Zentralalpen. Beitr. z. geol. Karte d. Schweiz (im Druck).
- KELLER, F. (1964): Bericht über die geologische Aufnahme der Strasse Grono-Buseno. Sammelst. geol. Dokum. d. Schweiz.
- KERN, P. (1947): Zur Petrographie des Centovalli. Diss. ETH Zürich.
- KNOBLAUCH, P. und REINHARD, M. (1939): Erläuterungen Blatt Iorio. Geologischer Atlas der Schweiz. Geol. Komm. d. Schweiz. Natf. Ges.
- KNUP, P. (1958): Geologie und Petrographie des Gebietes zwischen Centovalli, Valle Vigezzo und Onsernone. SMPM 38, 83-238.
- KOBE, H. (1956): Geologisch-petrographische Untersuchungen in der Tessiner Wurzelzone zwischen Vergeletto, Onsernone und Valle Maggia. SMPM 36, 243-350.

- KOPP, J. (1923): in Jenny, H., Frischknecht, G. und Kopp, J. (1923). Geologie der Adula. Beitr. geol. Karte Schweiz NF. 51.
- KORZHINSKII, D. S. (1959): Physico-chemical basis of the analysis of the paragenesis of minerals. New York, Consultant Bureau.
- KRIGE, L. J. (1918): Petrographische Untersuchungen in Val Piora und Umgebung. Eclogae geol. Helv. 14, 519-654.
- KÜNDIG, E. (1926): Beiträge zur Geologie und Petrographie der Gebirgskette zwischen Val Calanca und Misox. SMPM 6, 1-96.
- LAITAKARI, A. (1920): Über die Petrographie und Mineralogie der Kalksteinlagerstätten von Parainen. Comm. geol. Finl. Bull. 54, 1-14.
- MARAKUSHEV, A. A. (1964): Analysis of scapolithe parageneses. Geochim. intern. 1, 114-131.
- METZ, P. und WINKLER, H. G. F. (1963): Experimentelle Gesteinsmetamorphose VII. Die Bildung von Talk aus kieseligem Dolomit. Geochim. et Cosmochim. Acta, 27, 431-457.
- -- (1964): Experimentelle Untersuchung der Diopsidbildung aus Tremolit, Calcit und Quarz. Naturwiss. 51, 460-466.
- (1965): Die Forsteritbildung bei der Metamorphose quarzführender Dolomite. Vortrag Jahrestagung 1965 der Deutschen Mineralogischen Ges.
- MISCH, P. (1954): Stable Association Wollastonite-Anorthite, and other Calc-Silicate Assemblages in Amphibolite-Facies Crystalline Schists of Nanga Parbat, Northwest Himaleyas. Beitr. Mineral. Petrogr. 10, 315-356.
- MITTELHOLZER, A. E. (1936): Beitrag zur Kenntnis der Metamorphose der Tessiner Wurzelzone. SMPM 16, 22–182.
- NIGGLI, E. (1960): Mineralzonen der alpinen Metamorphose in den Schweizer Alpen. Int. Geol. Congr. XXI Sess. Norden, Copenhagen, Part B, 132–138.
- NIGGLI, E. und NIGGLI, C. R. (1965): Karten der Verbreitung einiger Mineralien der alpidischen Metamorphose in den Schweizer Alpen (Stilpnomelan, Alkali-Amphibol, Chloritoid, Staurolith, Disthen, Sillimanit). Eclogae geol. Helv. 58, 335-368.
- NIGGLI, P., PREISWERK, H., GRÜTTER, O., BOSSARD, L. und KÜNDIG, E. (1936): Geologische Beschreibung der Tessineralpen zwischen Maggia- und Bleniotal. Beitr. geol. Karte Schweiz. N.F. 71.
- VON PLATEN, H. (1937): Kristallisation granitischer Schmelzen. Beitr. Mineral. Petrogr. 11, 334-381.
- PREISWERK, H. (1913): Die metamorphen Triasgesteine im Simplontunnel. Verh. natf. Ges. Basel, XXIV, 1-34.
- (1917): Über neue Skapolithfunde in den Schweizer Alpen. Verh. natf. Ges. Basel, XXVIII, 165—190.
- REINHARDT, B. (1966): Geologie und Petrographie der Monte-Rosa-Zone, der Sesia-Zone und des Canavese zwischen Valle d'Ossola und Valle Loana (Prov. di Novara, Italien). SMPM 46, 569—694.
- REPOSSI, E. (1916): La bassa Valle della Mera, Studi petrografici e geologici. Mem. Soc. Ital. Sc. nat. e Museo civ. Storia nat., Milano VIII, 2.
- SCHMIDT, C. und PREISWERK, H. (1908): Erläuterungen zur geologischen Karte der Simplongruppe, 1:50000. Geol. Karte der Schweiz, Erl. Nr. 6.
- SCHWANDER, H. und WENK, E. (1966): Studien mit der Röntgen-Mikrosonde an basischen Plagioklasen alpiner Metamorphite. SMPM 47 (im Druck).

SPEZIA, G. (1903): Sull'Anidrite micaceo-dolomitica etc. del traforo del Sempione. Atti R. Acc. Sc. Torino 38.

STAUB, R. (1920): Über Wesen, Alter und Ursachen der Gesteinsmetamorphosen in Graubünden. Vjschr. Natf. Ges. Zürich, 65, 1-54.

STELLA, A. (1905): Il problema geo-tettonico dell'Ossola e del Sempione. Boll. R. Comitato geol. d'Italia, 1, pg. 33, 36, 37.

STRASSER, E. (1928): Geologie der Pizzo di Claro-Torrone Alto-Kette, sowie der penninischen Wurzelzone zwischen Val Calanca und Tessintal. Diss. Univ. Zürich.

TADDEI, C. (1937): Dalle Alpe Lepontine al Ceneri. Bellinzona.

- TILLEY, C. E. (1924): The facies classification of metamorphic rocks. Geol. Mag. 61, 167-171.
- -- (1925): Metamorphic zones in the southern Highlands of Scotland. Quart. J. Geol. Soc. London, 81, 100-112.
- (1948): Earlier stages in the metamorphism of siliceous dolomites. Min. Mag. 28, 272-277.
- -- (1951): A note on the progressive metamorphism of siliceous limestones and dolomites. Geol. Mag. 88, 175-178.

TROMMSDORFF, V. (1966): Beobachtungen zur Paragenese Forsterit (Klinohumit, Chondrodit)-Klinochlor in Marmoren des Lepontins und Bergells. SMPM 46, 421-430.

- TURNER, F. J. und VERHOOGEN, J. (1960): Igneous and metamorphic Petrology. New York.
- WEEKS, W. F. (1956a): A thermochemical study of equilibrium reactions during metamorphism of siliceous carbonate rocks. J. Geol. 64, 245-270.
- -- (1956b): Heats of formation of metamorphic minerals in the system CaO-MgO-SiO₂-H₂O and their petrological significance. J. Geol. 64, 456-472.
- WEIBEL, M. und LOCHER, TH. (1964): Die Kontaktgesteine im Albigna- und Fornostollen (nördliches Bergeller Massiv). SMPM 44, 157-186.

WENK, E. (1943): Ergebnisse und Probleme von Gefügeuntersuchungen im Verzascatal (Tessin). SMPM 23, 266-294.

- (1955): Eine Strukturkarte der Tessineralpen. SMPM 35, 311-319.
- (1956): Die lepontinische Gneissregion und die jungen Granite der Valle della Mera. Eclogae geol. Helv. 49, 251-265.
- (1962): Plagioklas als Indexmaterial in den Zentralalpen. SMPM 42, 139-152.
- --- (1963): Klinohumit und Chondrodit in Marmoren der Tessineralpen und der Disgraziagruppe. SMPM 43, 287-293.
- (1966): Einige Probleme des anatektischen Unterbaues der Alpen. Colloque étages tectoniques, Neuchâtel.
- WIELAND, H. (1966): Zur Geologie und Petrographie der Valle Isorno. SMPM 46, 189-303.
- WINKLER, H. G. F. (1965): Die Genese der metamorphen Gesteine. Heidelberg, Springer.

Manuskript eingegangen am 15. September 1966.