Zeitschrift:	Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie
Band:	47 (1967)
Heft:	1: Feldspäte
Artikel:	Anorthitbestimmungen von Plagioklas in Gesteinen mit der Gefüge- Röntgenkamera
Autor:	Günthert, Armin
DOI:	https://doi.org/10.5169/seals-36948

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 06.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Anorthitbestimmungen von Plagioklas in Gesteinen mit der Gefüge-Röntgenkamera

Von Armin Günthert (Basel) *)

Mit 3 Textfiguren

Abstract

A method has been developed which allows the determination of the Ancontent of plagioclase by use of the photographic X-ray-texture-goniometer after H. R. WENK. The method needs no mineral separation and gives the medium An-value of all plagioclase grains of a thin section. Equally results are obtained of plagioclase grains showing no twin-lamellae and cleavage. The determination curve for the An-content (fig. 1) fits well with curves obtained by other authors by more accurate methods. The method described is meant to be used by petrographers.

EINLEITUNG

Im Auftrag des Schweizerischen Nationalfonds wurde 1963 eine petrographische Arbeit im Quellgebiet der Maggia, Tessin, über Gneisse des Lepontins begonnen. Hiefür ist zur Abklärung gewisser petrogenetischer Fragen die Anwendung der Korngefügekunde von SANDER notwendig. Nach ihr werden Dünnschliffe orientierter Handstücke auf dem U-Tisch untersucht. Diese Methode lässt sich neuerdings ergänzen durch vorausgehende Untersuchungen an der Gefüge-Röntgenkamera nach H. R. WENK (1963, 1965), worauf später eingetreten werden soll. Unsere ersten Arbeiten an dieser Kamera galten der Aufnahme von gesteins-

^{*)} Adresse: Dr. A. Günthert, Mineralogisch-petrographisches Institut, Bernoullianum, Basel.

bildenden Einzelmineralien, wie Quarz, Glimmer, Calcit, Hornblenden, Mikroklin und Plagioklas. Diese Standardaufnahmen gestatten die Indizierung der verschiedenen Linien, wie sie Übersichtsaufnahmen von Gesteinsschliffen liefern; sie sind auch unerlässlich für unsere später einsetzenden Regelungsstudien an Gneissen. Da deren Feldspäte recht verschiedene Basizitäten besitzen, mussten verschiedene Plagioklastypen mit der genannten Kamera aufgenommen und indiziert werden. Dabei fiel uns auf, dass die Linien (131) und $(1\overline{3}1)$ mit steigendem An-Gehalt auseinanderrücken. Wir stellten uns deshalb die Frage, ob hier die Möglichkeit einer evtl. neuen Methode der An-Bestimmung der Plagioklase vorliege. Das nun erfolgende Studium der Arbeiten von J. R. SMITH et al. (1956), J. V. SMITH (1956) und J. V. SMITH und P. GAY (1958) zeigte jedoch, dass bereits genauere Untersuchungen über dieses Problem vorliegen. Sie wurden indessen nicht an Gesteinsdünnschliffen ausgeführt. Als kartierender Petrograph, der zahlreiche Plagioklase in Gneissen zu bestimmen hat, drängte sich uns die Anwendung der Gefüge-Röntgenkamera nach H.-R. WENK (op. cit.) auf. Sie erlaubt die Bestimmung direkt am Gesteinsdünnschliff und ohne Separation der Plagioklaskörner auszuführen. Im Zweifelsfall oder zur Kontrolle können röntgenographischer und optischer Befund miteinander verglichen werden. Ausserdem liefert diese Röntgenmethode unmittelbar Hinweise auf die Orientierung der Kristalle im Gestein und auf die mineralogische Zusammensetzung. Diese Methode ist auch für Pulverpräparate anwendbar.

Eine ähnliche Untersuchung haben an Kristallpulvern und Einzelkörnern BAMBAUER et al. (1965) und DOMAN et al. (1965) unternommen. Wir haben von diesen Arbeiten erst nachträglich Kenntnis erhalten und möchten keineswegs in die Diskussion über die Struktur der Plagioklase eingreifen. Es sind ja auch nur acht unserer vierzig Proben auf der Mikrosonde oder chemisch analysiert worden; sie wurden in Fig. 1 und Tab. 2 besonders hervorgehoben. Unsere Methode will lediglich dem kartierenden Petrographen eine weitere, wenn auch nur beschränkt anwendbare Möglichkeit der An-Bestimmung von Plagioklas zur Hand geben.

Wir wählen in dieser Arbeit als Beispiel die Reihe der Tieftemperaturplagioklase, verzichten aber auf einen Deutungsversuch der Struktur der Plagioklase. Wir verweisen hiefür auf die Arbeiten von BAMBAUER et al. und DOMAN et al.

Mit Präzisionspulverkameras (Guinier, Jagodzinsky) mag die Bestimmung zwar genauer werden, doch benötigt die Ausführung mit der Gefüge-Röntgenkamera keinen grossen Aufwand und ist für petrographische Bedürfnisse meist ausreichend.

Fig. 1. Beziehung zwischen $2 \theta_{(131)} - 2 \theta_{(\overline{131})}$ (Cu/Ni-Strahlung) und chemischer Zusammensetzung der Plagioklasgruppe. 1-40 untersuchte Proben (s. Tab. 2). Kurven $2 \theta_{(131)} - 2 \theta_{(\overline{131})}$ / An-Gehalt.

----- nach J. V. Sмітн (1956, p. 65, Fig. 3),

nach H. U. BAMBAUER et al. (1965, Fig. 1, 2, p. 328f.) für

- ------ Plagioklase mit < 0.5 Mol.-% Or
- ----- Plagioklase mit 3 Mol.-% Or
- ----- Plagioklase mit 4 Mol.-% Or
- ////// Bereich An₇₅₋₁₀₀

..... Bauschale inverse Zonarstruktur (nach U-Tischmessungen)

- Chemisch analysierte Proben
- $\underline{\circ} \ \underline{\odot} \qquad \text{Gradabstände von } 2 \theta_{(131)} \underline{\longrightarrow} 2 \theta_{(1\overline{3}1)} \text{ mit der Debye-Scherrer-Kamera ermittelt. (Daraus rechte Ordinate konstruiert)}$
- ×~~× Variationsbereich des An-Gehaltes der Plagioklase von Nr. 31 (s. Tab. 1). Die inhomogenen Körner zeigen verbogene Zwillingslamellen (mündl. Mitt. von R. Schmid).

237

METHODISCHES

Zur Aufstellung der Punktreihe Nr. 1—40 (Fig. 1) dienten optische und von Herrn Prof. Dr. H. Schwander ausgeführte chemische An-Bestimmungen an Plagioklasen der in Tab. 2 aufgeführten Gesteinsdünnschliffe und Pulver. Dazu wurden die Abstände der Plagioklaslinien (131)— $(1\overline{3}1)$ auf Aufnahmen in Millimetern gemessen, welche mit WENKS Kamera erhalten wurden. Herr Dr. A. Steck prüfte die Messungen der Proben Nr. 2, 15, 32 und 40 durch Pulveraufnahmen mit der Debye-Scherrer-Kamera.

Die Übersichtsaufnahmen wurden mit Hilfe der Gefüge-Röntgenkamera Typen GRK 1 und GRK 3 ausgeführt. Sie erzeugen beide fast ebenso gute Bilder. Mit GRK 1 benötigt man jedoch im Durchschnitt eine vier- bis sechsmal längere Belichtungszeit als mit GRK 3. Beide Kameras sind von H. R. WENK (op. cit.) beschrieben worden, es sei darauf verwiesen. Nach verschiedenen Versuchen erwiesen sich folgende Einstellungen als vorteilhaft.

Sigma = 15° .

Filmkassette = 120 mm ab Nullstellung.

Kreuztisch eingeschaltet (Schliff bewegt sich auf Zickzackbahn).

Drehtisch so eingeschaltet, dass auf GRK 1 in $4\frac{1}{2}$ Minuten, auf GRK 3 in 2 Stunden je eine Umdrehung erfolgt.

Eintrittsblenden: 0,5 mm.

Cu-Strahlung.

Ni-Filter.

Belichtungszeiten von GRK 3: im Mittel 3-4 Std.

Die Belichtungszeiten variieren je nach Mengenverhältnissen, Korngrössen, Gesamtgehalt an Fe und Mineralarten. Bei eisenreichen Gesteinen muss bei Cu-Strahlung im allgemeinen zur Reduktion des Filmuntergrundes kürzer belichtet werden, wenn keine Al-Schutzfolie verwendet wird.

Folgende Linien dienten zur Indizierung:

Quarz: $10\overline{1}1$, $11\overline{2}0$, 2020, $20\overline{2}1$, $11\overline{2}2$, $20\overline{2}2$,Plagioklas: $11\overline{2}$, $\overline{1}12$, $20\overline{2}$, 040, $2\overline{2}0$, $1\overline{3}1$, $0\overline{4}1$, 131, $\overline{1}32$, $24\overline{1}$ (vgl. Fig. 2).

Die Biotitlinien 003, $11\overline{3}$, $20\overline{1}$, 130, 040, 132, wie auch die Muskowitlinien treten glücklicherweise völlig zurück in den gemachten Aufnahmen. Dagegen wirkt sich ein grösserer Gehalt an Biotit, wie auch an Fe-reichen Hornblenden wegen der Fluoreszenzstrahlung bei Cu-Anode ungünstig aus.

Die Glimmer-, Mikroklin-, Hornblende- und Calcitlinien liessen sich

Fig. 2. Übersichtsdiagramm von Muskowit-Plagioklasgneiss Mto 114 (Nr. 12, Tab. 1, Fig. 1) mit Indizierung der wichtigsten Quarz- und Plagioklaslinien.

Fig. 3. Übersichtsdiagramm von Oligoklas-Pegmatit G 37 (Nr. 6, Tab. 1, Fig. 1) mit Indizierung der wichtigsten Quarzund Plagioklaslinien. Deutliche Regelung von Quarz und Plagioklas erkennbar.

an reinen Pulvern auf GRK 1 leicht gewinnen und mit den Schliffaufnahmen konfrontieren. Da die Mikroklinlinien mit jenen von Plagioklas z. gr. T. zusammenfallen, kommen nur mikroklinarme Gesteine für die An-Bestimmung der Plagioklase mittels Gefüge-Röntgenkamera nach H.-R. WENK in Frage. Im Verlauf der Versuche ergaben sich folgende einschränkende Aufnahmebedingungen (Tab. 1).

Tabelle 1. Bedingungen für Aufnahmen der Linien (131) und (131) von Tieftemperaturplagioklas in Gesteinen mittels der Gefüge-Röntgenkamera (Typen 1, 3) nach H. R. WENK:

Mikroklingehalt	< 10	Vol% des Gesteins
Plagioklasgehalt	> 20	Vol% des Gesteins
Glimmergehalt	< 30	Vol% des Gesteins
Hornblendegehalt*)	$<\!25\!-\!50$	Vol% des Gesteins
Pyroxengehalt	$<\!40$	Vol% des Gesteins
Granatgehalt	$<\!35$	Vol% des Gesteins
Carbonatgehalt	< 50	Vol% des Gesteins

Ausbildung der Plagioklase: klar, ungefüllt, Korndurchmesser > 0,2 mm.

*) Je nach Fe-Gehalt der Hornblende. Die vorläufigen Angaben über Hornblende-, Pyroxen- und Granatgehalt wurden nach Diskussion mit Herrn cand. phil. R. Schmid, Basel, festgelegt.

VORLÄUFIGE ERGEBNISSE

1. Die Methode liefert erstmals in einem Gesteinsdünnschliff den mittleren An-Gehalt aller Plagioklaskörner. Er kann direkt mit U-Tischbestimmungen verglichen werden. Dieser Mittelwert ist in manchen Fällen nomenklatorisch und genetisch bedeutsam.

2. Zonarstrukturen, fleckenförmige Verteilung des An-Gehaltes innerhalb eines Kornes und variabler An-Gehalt verschiedener Körner innerhalb eines Gesteinsdünnschliffes werden hingegen von dieser Methode nicht abgebildet. Hiefür benötigen wir nach wie vor die U-Tischmethoden.

3. Bei Mangel an optischen Bezugsrichtungen der Feldspäte versagen jedoch die U-Tischmethoden. Hier springt — bei Erfüllung der Aufnahmebedingungen — die röntgenographische Bestimmungsmethode ein.

4. Die Genauigkeit der An-Bestimmung liegt in den Bereichen von An_{0-30} und An_{50-100} bei $\pm 5\%$ An, im Zwischenbereich von An_{30-50} jedoch bei $\pm 10\%$ An. Ob im Zwischenbereich Ablösung der Kurven (DOMAN et al., 1965) oder horizontaler Kurvenverlauf (BAMBAUER et al., 1965) vorliegt, kann an Hand der wenigen Proben nicht entschieden werden.

5. Obwohl nur ein Fünftel der Proben chemisch oder auf der Mikrosonde analysiert ist, stimmt die Lage der Projektionspunkte mit der Kurve von J. V. SMITH (1956, Fig. 3) gut überein (der Autor zog die Kurve nur von An_{0-50}). Der Vergleich mit der von BAMBAUER et al. (1965, Fig. 1, 2) gegebenen Kurve ergibt ebenfalls gute Übereinstimmung, ausgenommen der Zwischenbereich von An_{20-48} , in dem die Projektionspunkte mehrheitlich unterhalb die Kurve fallen. Sie bleiben jedoch im Bereich der von BAMBAUER et al. angegebenen K-reicheren Plagioklase. Leider fehlen Or-Bestimmungen unserer Proben mit Ausnahme der folgenden drei Werte:

	Mol%			
	\mathbf{Or}	Ab	An	Sr-Feldspat
Nr. 21:	4,1	59,3	36,6	nicht best.
Nr. 33 (publiziert in E. WENK, 1965):	1,2	35,4	63,2	0,2
Nr. 34 (publiziert in E. WENK, 1966):	0,6	32,7	66,0	0,7

Die Bestimmungen wurden von Prof. Schwander auf der Röntgen-Mikrosonde ausgeführt.

Interessanterweise fällt der Projektionspunkt Nr. 21 in die geradlinige Verlängerung der von BAMBAUER et al. (1965, Fig. 1) angegebenen Kurve für Plagioklase mit 4 Mol.-% Or, womit diese Kurve bestätigt wird. 6. Die Peristeritlücke von An_{4-17} konnte einigermassen geschlossen werden.

7. Die Linien sind auch bei stark zonaren Plagioklasen erstaunlich scharf (Beispiele: Nr. 20, 22, 36, siehe auch Fig. 3). Ob dies wohl auf unterschiedliche Volumenverhältnisse der sauren und basischen Anteile innerhalb der Plagioklaskörner zurückzuführen ist? Jedenfalls fällt die Projektion des An-Gehaltes der Kernpartie dieser Plagioklase in das Kurvengebiet. Die (unregelmässig geformte) Kernpartie macht den Hauptteil der Körner aus und bestimmt den Abstand der Linien. Die basischen Kornränder bilden lediglich einen Saum, der in der Regel nur mit der Zonenmethode erfasst werden kann. In Fig. 1 wurde die maximale Variation der gemessenen invers zonaren Plagioklase angedeutet.

8. Die Textur des Gesteins kommt bei geregeltem Gefüge gut zum Ausdruck (s. Fig. 3).

Der Verfasser dankt folgenden Herren (alle in Basel) und folgender Institution:

- Dr. H.-R. Wenk für die Einführung in die Methode und wertvolle Diskussionen.
- Prof. Dr. E. Wenk für die Überlassung wichtiger Gesteins- und Mineralproben und die kritische Durchsicht des Manuskriptes.
- Dres. A. Spicher, W. Stern, V. Trommsdorff, cand. phil. R. Schmid und dem Naturhistorischen Museum Basel f
 ür die Überlassung weiterer wichtiger Gesteins- und Mineralproben.
- Prof. Dr. H. Schwander für eine Or-Bestimmung und mehrere An-Bestimmungen an Plagioklas mittels der Röntgen-Mikrosonde.
- Dr. A. Steck für vier Pulveraufnahmen von Plagioklas und die dazu gehörende Berechnung von 2 $\theta_{(131)}$ —2 $\theta_{(1\overline{3}1)}$ in Grad.
- Cand. phil. R. S. Sharma für die Bestimmung der Plagioklase eines Dünnschliffes auf dem U-Tisch.
- E. Glauser, Techn. Assistent, für Test- und Routine-Aufnahmen und mannigfache technische Ratschläge.
- H. Hänni für die prompte Herstellung von Dünnschliffen.
- Dem Schweizerischen Nationalfonds f
 ür die Anschaffung eines Generators und der Gef
 üge-R
 öntgenkamera 3 im Rahmen meines Projektes.

Tabelle 2. Liste der Messergebnisse (siehe Fig. 1)

Nr. in Fig. 1	Gesteins- Nr.	Film- Nr.	An-Gehalt d. Plag. mittels U-Tisch, *Mikrosonde oder chem. Analyse	$2 heta_{(131)}$ in mm	—2 θ ₍₁₃₁₎ in Grad	Gestein, resp. Mineral
1	Sp 239	832	1	4,5	1,110	Helle Lage in Hornfelsgneiss
2	—	567	$3\frac{1}{2}-4$	4,5	1,110	Albitpulver
3	Sp 235	829	5-6	4,5	1,110	wie Nr. 1
4	S 7/2	805	05	4,6	1,133	Kalzitf. Epidot- Albitschiefer
5	Sp 233	830	3	4,6	1,133	wie Nr. 1
6	G 37	$\begin{array}{r} 616 \\ +798 \end{array}$	915 inv. zonar	5,5	1,333	Oligoklas- Pegmatit
7	G 444	825	14	5,5	1,333	Lagengneiss
8	G 512	816	15	5,75	1,387	Epidotgneiss
9	G 362	812	14	5,9	1,420	Zweiglimmergneiss
10	Bn 603	583	12	6,0	1,440	Albitoligoklaspulver
11	Sp 147	839	12	6,0	1,440	Orthogneiss
12	Mto 114	601	20—25 inv. zonar	6,0	1,440	Muscovitgneiss
13	G 20 A	819	18-20	6,3	1,510	Bändergneiss
14	G 356	821	20	6,3	1,510	Granatf. Zwei- glimmergneiss
15	Bn 651	584	20	6,5	1,560	Oligoklaspulver
16	Sp 7	781	24	6,6	1,580	Biotitgneiss
17	Sp 176	833	27	6,5	1,560	Giumellogneiss
18	G 244	826	31	6,6	1,580	Biotitgneiss
19	G 513	634	27—30 inv. zonar	6,8	1,630	Hornblendegneiss
20	G 108	828	19—85 inv. zonar	6,7	1,605	Biotit-Hornblende- gneiss
21	Sp 84	782	36*	6,9	1,653	Cocco-Gneiss

Geologische Zugehörigkeit	${f Fundort}$	Bestimmung d. An-Gehaltes des Plagioklas durch		
Seengebirge Ceneri-Zone	A. Devré, V. di Caneggio	A. Spicher		
unbekannt	unbekannt (aus der Institutssammlung)	O. GRÜTTER		
Seengebirge Ceneri-Zone	A. Devré, V. di Caneggio	A. SPICHER		
Unt. Schieferhülle d. Tauern (Mesoz. Anteil	Sengesser Kuppel I)	V. TROMMSDORFF		
Seengebirge Ceneri-Zone	A. Devré, A. di Caneggio	A. SPICHER		
Maggia-Lappen	A. Masnaro, V. di Peccia	A. GÜNTHERT		
do.	E P. del Lago Scuro	do.		
do.	S Lago Nero, V. Bavona	do.		
do.	E A. Garzonera, V. Sambuco	do.		
do.	Mineraldruse SW P. Sciresa	do.		
Seengebirge Ceneri-Zone	E A. Marinengo, Val d'Isone	A. Spicher		
Maggia-Lappen	E Sambuco-Stausee	A. GÜNTHERT		
do.	A. Masnaro, V. Peccia	do.		
do.	N Laghetto 2074, A. Campo la Torba	do.		
do.	Mineraldruse A. Sciresa	do.		
Maggia-Zone	SE Coglio, 696.850/124.550	A. SPICHER		
Seengebirge Ceneri-Zone	E A. Marinengo, Val d'Isone	do.		
Maggia-Lappen	A. V. Maggiore, V. Peccia	A. GÜNTHERT		
do.	S Lago Nero, V. Bavona	do		
do.	A. dei Sassi, V. Peccia	do.		
Maggia-Zone	V. Giumaglio, 695.875/129.325	A. Spicher		

....

Tabelle 2. (Fortsetzung)

Nr. in Fig. 1	Gesteins- Nr.	Film- Nr.	An-Gehalt d. Plag. mittels U-Tisch, *Mikrosonde oder chem. Analyse	$2 \ heta_{(131)}$ in mm	—2 θ ₍₁₃₁₎ in Grad	Gestein, resp. Mineral
22	G 508 B	585	28—42 inv. zonar	7,0	1,677	Oligoklas- andesinpulver
23	G 253	837	31	7,0	1,677	Hornblendegneiss
24	Sd 314 a	784	36	7,0	1,677	Granat-Anorthosit
25	Sd 385 a	785	$42\frac{1}{2}$	7,0	1,677	Granat-Anorthosit
26	Hr 15 0	727	42	7,1	1,700	Plagioklas- Amphibolit
27	—	575	$52\frac{1}{2}$	7,2	1,727	Labradoritpulver
28		570	54	7,25	1,740	Labradoritpulver
29	Sd 340 d	790	48	7,50	1,800	Stronalith A
30	Sd 335 b	788	60	7,50	1,800	Pyroxen-Horn- blende-Gabbro
31	Sđ 196 b_1	797	55-73	7,50	1,800	Bronzit-Anorthosit
32	Nor 83	801	55 *	7,70	1,857	Anorthosit
33	J 3	811	63*	8,0	1,937	Norit
34	2 a	802	66*	8,0	1,937	Gabbro
35	Sd 553 g	804	67	8,2	1,993	Norit
36	G 6	617	80*1) 68—78 inv. zonar u. 69, 70	8,5	2,083	Carbonatf. Bündnerschiefer
37	Toce 11	726	71*	8,5	2,083	Hornblende-Bytow- nit-Granulit
38	Uppsala Nr. 15471	842	90*	8,7	2,155	Anorthosit
39	G 536 V.	639	90	8,9	2,220	Hornblendegneiss
40	Ind. 19	779	92*	8,9	2,220	Metamorph. epidot- führend. Anorthosit

¹) Das auf der Mikrosonde erhaltene Resultat von 80 An entstammt einem zweiten Splitter des sehr inhomogenen Gesteins.

Geologische Zugehörigkeit	Fundort	Bestimmung d. An-Gehaltes des Plagioklas durch			
Maggia-Lappen	NNW Passo Lago Nero, V. Peccia (Kluftmineral)	A. GÜNTHERT			
do.	A. V. Maggiore, V. Peccia	do.			
Seengebirge Zone Ivrea-Verbano	Valgrande, Mündung des Val Balm Bert	R. SCHMID			
do.	Oberes Valle di Nibbio	do.			
Maggia-Lappen	S P. Scheggia, V. Sambuco 692.95/148.20	P. HASLER			
unbekannt	unbekannt (Institutssammlung)	O. GRÜTTER			
do.	do.	do.			
Seengebirge Zone Ivrea-Verbano	Valgrande, Mündung des Valpiana	R. Schmid			
do.	Valgrande, l'Arca	do.			
do.	S A. Screna	do.			
Grundgebirge	Garnes, Bergens Bogen, Norwegen	E. WENK U. H. SCHWANDER			
Charnokit-Serie	Pallavaram, Indien	do.			
Odenwald	Frankenstein	do.			
Seengebirge Zone Ivrea-Verbano	A. Sciarina, Valle d'Ossola	R. SCHMID			
Teggiolo-Serie	SW Gheiba, V. Peccia	A. GÜNTHERT			
Zone v. Ivrea	Anzola	E. WENK U. H. SCHWANDER			
Grundgebirge	Bönskär, Schweden	H. SCHWANDER und V. TROMMSDORFF			
Maggia-Lappen	E Ponc. di Braga, V. Peccia	A. GÜNTHERT			
Charnokit-Serie	Sittampundi, Indien	E. WENK u. H. SCHWANDER			

LITERATURVERZEICHNIS

SMPM = Schweiz. Mineralogische und Petrographische Mitteilungen

- BAMBAUER, H. U., CORLETT, M., EBERHARD, E., GUBSER, R., LAVES, F., NISSEN,
 H. U. and VISWANATHAN, K. (1965): Variations in X-ray Powder Patterns of Low Structural State Plagioclases. SMPM 45, 327-330.
- DOMAN, R. C., CINNAMON, C. G. and BAILEY, S. W. (1965): Structural Discontinuities in the Plagioclase Feldspar Series. Amer. Mineral. 50, 724-740.
- SMITH, J. R. and YODER, H. S., Jr. (1956): Variations in X-ray Powder Diffraction Patterns of Plagioclase Feldspars. Amer. Mineral. 41, 632-647.
- SMITH, J. V. (1956): The powder patterns and lattice parameters of plagioclase feldspars. I. The soda-rich plagioclases. Mineral. Mag. 31, 47-68.
- SMITH, J. V. and GAY, P. (1958): The powder patterns and lattice parameters of plagioclase feldspars. II. Mineral. Mag. 31, 744-762.
- TROMMSDORFF, V. (1966): Zur optischen Orientierung des Bytownites von Bönskär (Schweden). SMPM 46, 1.
- WENK, E. (1965): Labradorite from Pallavaram near Madras. Ind. Miner. 6, 1 and 2, p. 83.
- (1966): Die optischen Migrationskurven. In: ВURRI, С., РАККЕВ, R. und WENK,
 E. (1966): Die optische Orientierung der Plagioklase. Birkhäuser Basel.
- WENK, H.-R. (1963): Eine Gefüge-Röntgenkamera. SMPM 43, 707-719.
- (1965): Eine photographische Röntgen-Gefügeanalyse. SMPM 46, 493-526.

Manuskript eingegangen am 2. Mai 1966.