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SCHWEIZ. MINERAL. PETROGR. MITT. 69, 423—433, 1989

The volcanic suite of the Julier area (Grisons)
Part 1: volcanic and tectonic evolution

by Ivan Mercolli’

Abstract

A suite of Upper Paleozoic volcanic rocks outcropping in the North-West of the Julier pass (Grisons)
belongs to the lowermost Austroalpine unit (Err nappe). That suite is composed of large masses of rhyolitic
pyroclastics with minor amounts of rhyodacitic, andesitic rocks and basaltic andesites. The magmatic suite is
completed by a small rhyolitic subvolcanic body and a large granitoid intrusion. The volcanics overlie polymeta-
morphic gneisses and the whole complex is covered by lower Triassic sediments. The Alpine orogeny (deforma-
tion and metamorphism) has obliterated many of the original characteristics of these magmatic rocks. Neverthe-
less, a careful interpretation of relic structures allows to model the Variscan magmatic and tectonic evolution of

this area.
In this light the major results are:

— The Julier volcanics show the characteristics typical of a calcalkaline series evolving in a volcanic arc situation.

— The volcanics were affected by a tectonic phase prior to the sedimentation of the Triassic.

— During the Variscan orogeny, which was responsible for the generation of the volcanics and for their subse-
quent tectonic overprinting, the Julier area seems to have been part of a cordillera above a subduction zone.

Keywords: Volcanics, calcalkaline series, Variscan orogeny, Austroalpine, Julier area, Switzerland.

Introduction

Paleozoic metaigneous rocks outcrop in the
area around the Julier Pass (Grisons). Their pro-
toliths include plutonic assemblages (diorite,
granodiorite, granite}, subvolcanic elements
~ (granophyre) and a volcanic series (basaltic
andesite, andesite, dacite, rhyodacite, rhyolite).
Together with the polymetamorphic basement
and the Mesozoic sediments, they constitute the
lowermost Austroalpine nappe (Err nappe),
which is directly overthrusted on the Penninic
Platta nappe.

This area has been mapped early in the centu-
ry (1910-1929) by CornNeLius who described
in detail the Ilithologies (CornELIUs, 1935)
and the tectonic relations (CoRNELIUS,1950).
Between 1965 and 1985 Ti. PETERS and V. DIET-
rRICH mapped the Oberhalbstein area in detail,
integrating a series of master theses of the
Geological Institute of the ETH Zurich (W. Fin-
GER,1972; M. NoLDp, 1972; F. GiovaNoLl, 1972:
J. UrniNnGger, 1972; P. NIEVERGELT, 1976;
A. HANDKE 1977).

The aim of the present work is to understand
the Variscan magmatism and its consequences on
the tectonic evolution of this area.

Only few outcrops of this area are suitable
to study the original magmatic relationships,
because of intense wedging of the different rock
units, as result of the superposition of the Alpine
and Variscan tectonics. Therefore almost all
data and petrogenetic discussions refer to the
restricted area (about 20 km*) NW of the Julier
Pass (Fig. 1).

Definition of the lithotypes

CornELIUS’ rock terminology is based, par-
ticularly for the volcanics, on local names. In this
work, a compromise between lithological, geo-
chemical and genetical relationships is used.
Table 1 summarizes the main lithologies and
connects the terminology used here to the one
used by CorneLIUs (1935).

" Mineralogisch-petrographisches Institut Universitit Bern, Baltzerstrasse 1, CH-3012 Bern.
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Fig. 1 Geological sketch map of the Julier area, simplified from CorneLius (1932):
Geologische Karte der Err-Julier Gruppe, 1:25000, 1932, Schweiz. geol. Kommision, Spezialkarte Nr.115A.
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VOLCANICS OF THE JULIER AREA

The geochemical characterization of the vol-
canics is partly described in MERrcoLLI (1982)
and will be dealt with in a forthcoming paper.

All magmatic rocks underwent Alpine defor-
mation and greenschist facies metamorphism.
Consequently, all the magmatic rock names
should be preceded by the prefix “meta” (meta-
granite, metarhyolite, ...). In this study, the prefix
will only be used for important definitions; for
the rest of the text the prefix “meta” will be im-
plied for brevity.

Table 2 summarizes the mineralogical com-
position of the magmatic series. Unfortunately,
the Alpine metamorphism has strongly altered
the original mineral assemblages. Especially
affected are phases like plagioclase, amphibole,
pyroxene, biotite and the glassy matrix, which
have reacted to sericite, chlorite, albite, epidote.

This mineralogical alteration greatly reduces
the use of mineralogical arguments for the inter-
pretation of the magmatic evolution.

For a detailed description of the basement
rocks we refer to CorNELIUS (1935) and for the
stratigraphy of the sedimentary cover see FiN-
GER (1978).

Geological setting of the different rock units

The geological sketch (after CORNELIUS,
1932; integrated with personal observations) of
the studied area (Fig. 1) illustrates the surface
distribution of the different rock units and some
geographical landmarks cited in the text.

In order to understand this complex tectonic
edifice, attention will be focussed on the attitude
of the volcanics.

The lithological profile A (Fig. 2) shows sche-
matically (no true thickness scale) the contact re-
lationships between basement, granophyre and
volcanics. This profile should represent the base
of the volcanic sequence.

Profile B (Fig. 2) demonstrates the strati-
graphical succession between the different
volcanic units (rhyolite, rhyodacite, andesite and
basaltic andesite).

The top of the volcanic series is marked by
the occurrence of an almost monogenic conglom-
erate or breccia (only rhyolite components)
grading into a sandy shale (FINGER, 1972). Such
deposits may be interpreted as epiclastics derived
from the rhyolitic pyroclastics. They are strati-
graphically overlain by the corneoles («Rauh-
wacken») of the lower Triassic. Locally Triassic
sediments lie directly on the gneiss.

It must be underlined that the major difficulty
in understanding the original attitude of the mag-
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matic series is represented by the strong tectonic
overprint (in Variscan and Alpine times) which
has, in many cases, obliterated the primitive mu-
tual relations of the rocks. Nevertheless, some
important relations have been preserved:

— Gneisses in amphibolite facies are the
substratum on which the volcanic rocks were
deposited.

- These gneisses are intruded by a granite
and very likely also by the granophyre, even
though this latter relation cannot be clearly
proven.

— Only the dacite and the rhyolites are in
contact with the gneisses.

~ Only the rhyolites and the gneisses are di-
rectly overlain by Triassic sediments.

—~ The rhyolites and the rhyodacites are
sharply separated by an irregular surface (paleo-
surface).

- The rhyodacite passes gradually into the
andesites.

—~ No mappable boundary has been found
between the andesites and the basaltic andesites.

— The andesites and/or the basaltic andesites
are always separated from the rhyolites by a
layer of rhyodacite or by a clear tectonic contact.

Volcanological frame

The reconstruction of the eruptive and
depositional mechanisms of the Julier volcanics
is mainly based on few isolated observations and
remains speculative. However, some general
statements can be made. Macroscopically, rhyoli-
tes, rhyodacites and andesites exhibit the inho-
mogeneous character typical of pyroclastic rocks.
Basaltic andesites and to some extent also the
dacite, seem to be much more massive and
homogeneous, suggesting that those rocks were
extruded as lava flows. Microscopic features
confirm these impressions. Rhyolites, rhyoda-
cites and andesites show very inhomogeneous
groundmass. A major difficulty consists in the
distinction between primary and metamorphic
structures. In some cases the differences of
mineralogical compositions of various parts of
the groundmass seem to reflect original composi-
tional discontinuities. In other samples they are
clearly the product of metamorphic reworking
(micro-shear zones, small veins, etc.). Accepting
the pyroclastic nature of the main part of the
volcanics, one can attempt to define the deposi-
tional mechanism. In the genetic classification
of pyroclastic flows by WRIGHT et al. (1980),
the Julier pyroclastics would fall into the field
of ignimbrite-pumice and ash flow deposits,
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VOLCANICS OF THE JULIER AREA

produced by the collapse of a Plinian eruption
column as envisaged by Sparks et al. (1978).
Following FiscHER and SCHMINCKE (1984) (Tab.
11.3, p. 310) in comparing unwelded ignimbrite
with other types of volcanoclastic deposits, the
general features of the Julier pyroclastics coinci-
de with the following characteristics of ignimbri-
tes: absence of large boulders - poor sorting -
poor grading - appreciable thickness with an
eventual vague internal layering - subangular
shape of the rare fragments of basement.

Unfortunately, none of the other classical
criteria for the definition of ash flow deposits
(degree of vesiculation, shape of the shards,
degree of welding, fiamme) are preserved. Fig. 3
shows features that could be interpreted as re-
crystallized fiamme and pumice shards.

Izerr (1981) tried to classify silicic fallout
ashes chemically. In his Ca versus Fe diagram the
Julier rhyolites plot in the field of dacite glass
(Fig. 4). IzeTT (Op. cit.) also gives some general
features for each group. The rocks falling in the
dacite glass field have as phenocrysts quartz,
sanidine, clinopyroxene, orthopyroxene, amphi-
bole, magnetite, ilmenite and apatite. The SiO,
content for these rocks ranges from 67 to 77
weight%. Glass shards show different shapes and
can have a wide range of composition in a single
bed. Some of these features have been observed
(mainly as relics) in the Julier rhyolites (Tab. 1
and 2).

Fig. 3 Relic structures in rhyolites, interpreted as re-
crystallized fiamme (a) and pumice fragments (b). gz =
quartz, chl = chlorite, ep = epidote, mu = muscovite, cc
= calcite.
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Fig. 4 Classification of rhyolite ash flow deposits
after IzetT (1981). Data from Mercolli (unpublished).

The following observations help to under-
stand the volcanic environment during the em-
placement of the volcanics:

~ The main volcanic activity was rhyolitic.

— The rhyolites form a more or less mono-
tonous unit without any important lithological
discontinuities, except for two outcrops of brec-
ciated rhyolite containing some basement frag-
ments.

— The top of the rhyolites is eroded, marking
a time lapse (which can be short, days, months)
between rhyolites and rhyodacites.

— Rhyodacites, andesites and basaltic andes-
ites are not separed by an erosional surface; it
seems, therefore, that these three rock types be-
long to the same eruption unit.

— Thick sequences of epiclastics are absent,
indicating a facies proximal to the eruption
center(s).

This setting could best be related to the for-
mation of a caldera structure. What we see is
obviously only a strongly deformed relic of such
a structure, but comparing these features with
classical caldera situations (SMiITH and BAILEY,
1968; LipmMaN et al., 1978, LipmAN, 1984) the
similarities are striking. An intra caldera situa-
tion could also very well explain why it is in this
area that the volcanic series maintain their origi-
nal lithological and structural relations. Clearly
the effects of regional tectonics and erosion in
this protected situation, caldera inside, are much
smaller than outside.
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Following this train of thought it becomes
possible to interpret the anomalous occurrence
of dacite as a collapsed relic of the pre-caldera
volcanism into the caldera itself.

If this reconstruction is correct, the normal
stratigraphical sequence then is gneiss-(dacite)-
rhyolite - rhyodacite - andesite - basaltic andesite.
According to the current geochemical discrimi-
nation diagrams (Kuno, 1968; IRVINE and BA-
RAGAR, 1971; PEARCE and CANN, 1973; Miya-
SHIRO 1974; PEARCE et al., 1984) geochemically
the Julier volcanics belongs to the calcalkaline
series (Fig. 5).

All the observations on the Julier volcanics,
rock types, emplacement mechanism, chemical
composition, association with granitoids, con-
verge to the same result:

- These volcanic rocks are the product of a
magmatism related to the subduction of oceanic
crust under continental crust. In other words the
Julier volcanics were produced in a continental
arc environment, as displayed actually in the
Andes.

The magmatic evolution of the Julier suite
can be summarized as follows. During a subduc-
tion process, basaltic magmas were generated at
upper mantle levels. These rose the lower con-
tinental crust where they met rocks at conditions
of upper amphibolite facies. Upon magma arri-
val, parts of these rocks were already undergoing
partial melting (migmatitisation). The intrusion
of the basic magmas into such an environment
increased the extend of melting of the crustal
rocks. It was thus possible to produce large mas-
ses of granodioritic melt rather than leucogranit-
ic magmas which would have formed if a smaller
proportion of the migmatites had been partially
molten. A complex ascent mechanism of these
molten masses through the crust involving a mag-
matic differentiation (fractional crystallization,
assimilation of country rocks, mixing of different
magmas, ...} ultimately lead to different kinds of
plutonic and/or volcanic association. This evolu-
tion could have been remarkably different for
separated melt batches, even though these origi-
nated from the same source.

For the particular case of the Julier volcanics
1 would envisage an evolution as follows:

A batch of basaltic magma, evolved mainly by
fractional crystallization, reached the surface and
produced the dacite as a precursor of the main
rhyolitc activity. Facilitated by this precursor ac-
tivity, a large mass of rhyolitic magma subse-
quently reached the upper levels of the crust.
The intrusion of basaltic magmas into this mag-
ma chamber triggered the eruption of volumi-
nous rhyolitic pyroclastics (SpARks et al., 1977).

I. MERCOLLI1

The consequence was subsidence of the chamber
roof, leading to the formation of a caldera struc-
ture. The granophyre would represent part of the
rhyolitic magma crystallised under subsurface
conditions. The intense stirring of the magma
due to the previous events, allowed the mixing of
the basaltic and the rhyolitic magmas with the
formation of intermediate compositions. These
were then extruded in the caldera to form rhyo-
dacite, andesite and basaltic andesite, marking
the end of the volcanic activity in this area. A
period of erosion and the wedging of the volca-
nics with the basement followed. Due to this tec-
tonic phase granitic magma could reach the up-
per crust along thrust surfaces thus forming the
granitic body.

The age problem

No radiometric age determination of the mag-
matic rocks in this area has yet been published.
RAGETH (1984) cited a personal communication
from Griinenfelder dealing with an upper Carbo-
niferous age (305 ma.) for the Julier-Bernina
granitoids.

A generally accepted statement of Alpine
geology says that such rhyolitic volcanics were
extruded in Permian time. This assumption is
mainly based on stratigraphic evidence. Many of
these rhyolites are stratigraphically overlain by
lower Triassic carbonaceous sediments and some
of them are interbedded with thick clastic sedi-
ments showing significant analogies with typical
Permian deposits (DOSEGGER, 1974). The strati-
graphical arguments, however, are not totally
independent. DOSEGGER (1974) assigns the low-
er and middle Permian age to the clastic sedi-
ments with volcanics only because of lithological
similarities of his volcanics (Austroalpine) with
those of Bolzano dated from that period.

In the Aar massif, FRANKs (1968) situates the
rhyolites in Westphalian times on the basis of
datable related sediments (JonGMans, 1960). In
the central Aar massif, SCHENKER (1985) de-
scribes rhyolites (which can be well correlated
with those of FrRANKs) intruded by granitoids
(central Aar granit) dated from the Permian-
Carboniferous limit (281 ma., WOTHRICH, 1965).

As can be seen, the problem of the age of the
Variscan magmatism in the Central Alps is far
from being solved. It becomes more and more
evident that, at least for the most part, the rhyo-
litic volcanics are older than the often associated
granitoids and not vice versa as generally accep-
ted.
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and
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Lacking precise indications I consider that the
evolution discussed previously, took place some
time in the Upper Paleozoic.

Tectonic evolution

On the basis of the described stratigraphy one
can try to discuss the tectonic evolution of the
Julier area from the Upper Paleozoic to the Al-
pine time.

One of the major consequences of the pre-
viously described volcano-stratigraphy is that the
sequence  rhyolite-rhyodacite-andesite-basaltic
andesite out-cropping in the Vairana region lays
upside down. On this inverse sequence the Trias-
sic sediments show a normal succession (even if
partly disturbed by Alpine tectonics). Hence the
upside down position of the volcanics must be
the product of pre-Triassic tectonics. Admitting
that an Upper Paleozoic tectonic event (i.e. Va-
riscan) had affected the Julier volcanics after
their emplacement, then it arises the problem of
separating Alpine from Variscan tectonics.

Near the main Alpine thrust between the
Platta nappe (Penninic) and the Err nappe (Aus-
troalpine), Mesozoic sediments are wedged to-
gether with the rhyolites. This led CorNELIUS
(1950) to distinguish the Carungas nappe from
the Err nappe as the lowermost Austroalpine
unit in this area. If one accepts wedging of Meso-
zoic sediments as a criterion characterizing Al-
pine tectonics, then structures like the reverse
series in Vairana and the thrusting of rhyolite
beneath gneiss, which does not involve Mesozoic
sediments, can be interpreted as Variscan. A fur-
ther indication that the wedging of the volcanics
took place before the sedimentation of the Trias-
sic units is given by Mesozoic sediments, strati-
graphically overlaying only rhyolite or gneiss, but
never the more basic units on the top of the vol-
canic series.

In other words, the Paleozoic volcanics
suffered a thrusting and/or folding phase in
Variscan times, leading to a first intense altera-
tion of the primitive edifice. After a Permian
erosional phase followed the sedimentation
of the Mesozoic units. The Alpine tectonics (in
this region mainly a thrust-wedging style) com-
plicates the structures by wedging together the
Variscan basement (including the volcanics) and
the Mesozoic sediments. The intensity of this
process can be deduced from the strong paral-
lelism of Variscan and Alpine structures.

In summary, the geological history of this
arca can be sketched as follows:

I. MERCOLLI

Carboniferous-Permian

— Uplift and erosion of the high metamorphic
gneisses. The age of this metamorphism is prob-
ably Variscan, though it could be older (Ca-
ledonian).

— Early volcanic activity of dacitic composi-
tion

~ Main eruption of large masses of rhyolitic
pyroclastics

— Subsequent extrusion of more basic mater-
ial (rhyodacite, andesite and basaltic andesite)

— Tectonic phase leading to the wedging of
the volcanic sequence together with the gneisses
— Syntectonic emplacement of the granite

— Erosion of the Variscan relief

Mesozoic

~ Sedimentation of the Mesozoic units

Cretaceous-Tertiary

— Thrusting of the Austroalpine nappes over
the Penninic units

— Regional Alpine metamorphism under
greenschist facies conditions

Concluding remarks

This type of evolution can be extended from
the Julier area to neighboring areas. The ad-
jacent lower Austroalpine unit (Julier-Bernina
nappe) chiefly consists of large plutonic bodies.
BUHLER (1983) and RAGETH (1984) in particular,
point out the existence of two main series: one
with diorites, granodiorites and granites belon-
ging to the calcalkaline family and a younger one
with quartz syenites, alkalifeldspar granites
(sometimes with rapakiwi structures) and alkali-
feldspar rhyolites which might belong to the
alkaline family. If the first series agrees very well
with the continental arc situation postulated for
the Julier volcanics, the second series could be
interpreted as a product of continental rifting
subsequent to the lower Permian cratonisation of
Gondwana and Europe. In this case this second
series could be compared with the upper
Permian-lower Triassic alkaline complex of
Corsica and Predazzo-Monzoni and would re-
present magmatism related to the rifting of the
Variscan continent which initiates the opening of
the Tethys.

Similar evolutionary schemes for the Upper
Paleozoic volcanics in the Central Alps have
been proposed in recent times by SCHENKER
(1985) for the Aar massif and BuLeTTI (1984),
StiLLE and BureTTt (1987) for the volcanics of
the Lugano area (Southern Alps).

It is becoming more and more evident that
the Variscan orogeny can be interpreted success-
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fully in terms of plate tectonics. In particular, the
late Variscan magmatism in the Central Alps
appears to have evolved in a cordilleran situa-
tion, on the southern continental margin of the
European block, above a subduction zone pro-
duced by the underplating of the Proto-Tethys
oceanic plate (MERcOLLI and OBERHANSLI,
1988).
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