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The Growth of Structure in the Universe
F. Occhionero, N. Vittorio, M. Boccadoro. S. De Luca

1. Visible and Invisible Matter

a) Cosmological Deuterium

In cosmology we use as a reference value for
the present cosmic density the so-called
critical density.

Pent3 n C.i - 2 x 10 ~9h2gcm

H0= 100 h (km/s/Mpc), f < h < 1 ; 1

determinations of H0 are done by several
authors, Sandage and Tammann (1976), de
Vaucouleurs and Bollinger (1979), Aaronson
et al. (1980). It is also convenient to use the
ratios

-81) — Pô/Pcrit • -- B„ PnJPeril •••».. (2.)

for the total density and its partial components.

(The subscript "0" refers here and
below to the present epoch.) For ß0< 1. the
Universe is spatially open or flat and
energetically hyperbolic or parabolic - i.e. it will
expand forever - while for Q0> 1 the
Universe is spatially closed and energetically
elliptic - i.e. it is bound to collapse. This
beautiful interaction between energetics and
geometry is born from General Relativity,
as we will see.
Primordial nucleosynthesis, occurring at the
end of the first three minutes (e.g. Weinberg
1972 and 1977) gives us a powerful

theoretical tool to evaluate p0 or - better - its
baryonic component, At temperatures
T> 10k' K (t<l sec) weak interactions and
//-decay keep the neutron to proton number
density ratio to its equilibrium value.

exp -dmc2/kTl.

where dm is the mass difference between

neutron and proton: meanwhile deuterium is
formed and destroyed:

n i- p< i D - y

As the temperature drops the weak
interaction rate falls below the expansion rate
- 1 /t): at T= 1010 K the two rates are equal

and the neutron to proton ratio freezes out;
this ratio decreases then slightly further due
to neutron decay. At 109 K deuterium is no
longer destroyed, the bottleneck is broken
and He4 is formed: due to the absence of
any stable nucleus at mass 5, all the nucléons
end up in He4. The abundance of the latter,
Y, is therefore basically twice the abundance
of neutrons. Therefore the cosmological
abundance of He4 depends essentially on the
rate of the cosmological expansion during
the nucleosynthesis, which is directly related
to the energy density of the photons and the
relativistic particles h ' and i at 109 K. The
abundance of deuterium depends instead on
the competition between formation and
destruction in two body reactions: it is therefore

sensitive to the nucléon density at
nucleosynthesis, which is related to the
present nucléon (or baryon) density. The
above argument is made precise bv detailed
study of the time evolution of the abundance
of the various nuclei by the numerical
integration of the appropriate differential
equations (e.g. Schramm and Wagoner 1977,
Steigman 1979): in particular the amount of
deuterium that survives decreases steeply as
the present baryon abundance. pB(j or f2Boh2.
increases.
The observed amount of deuterium (York
and Rogerson 1976. Vidal-Madjar et al.
1977) is large, /D3;2xlCr5. If it is of
cosmological origin - which is not obvious
since it might have been created and
destroyed elsewhere: see the discussion by
Greenstein (1980) - the implication that
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follows (Gott et al. 1974) is that the present
baryon density is low. of the order of some
units in 10~31 g/cm3: hence

B(.h2 lt>~2. (3)

This takes into account all the baryonic
matter that has been processed in the Big-
Bang, irrespective of whether such matter
at present is or not in a luminous form.
The standard Big-Bang scenario sketched
above has been recently further exploited
(Yang et al. 1979; see also Shvartsman 1969.

Doigov and Zel'dovich 1981) to set an upper
limit on the number of lepton species, NL.
In this case. He4 abundance must be used:

in fact adding the associated neutrino flavors
to the cosmic medium increases the energy
density of relativistic particles and decreases
the age of the Universe.

— 1 htili
Hence more neutrons are present and more
He4 is formed: from a limit Y<0.25, it is

concluded that N, <3; thus there should not
be many more leptons beyond the known
electron, the muon and the newly discovered
tau. We will use this estimate later on (see.
however, Stecker (1980) for a different point
of view),

b) Luminous Matter

Cosmology has also straightforward
observational arguments to evaluate the mean
cosmic density. Zwicky in the 30's observed
that in order to bind the Virgo Cluster it is

necessary to have 500 times more mass than
it is apparently there; this started an
important line of research, that of the missing
mass, wherein cosmologists try- to discover
whether or not in galaxies and their
associations there is more mass than is directly
responsible for the observed electromagnetic
emission. The issue has become more
compelling. already at the level of individual
galaxies, after the remark by Ostriker and
Peebles (1973) that the thin disks of spiral
galaxies would not be stable against bar
instability unless they were embedded in
massive halos. Observational support of this
theoretical speculation has been strong
particularly from 21-cm observations

showing constant rotational velocities of HI-
clouds at large distances from galactic
centers. For this and other reasons, we have

now little doubts about the existence of the

missing mass and we prefer to consider it
hidden or dark and we rather speak of
missing light.
A convenient tool for the investigation of
this problem are mass-to-light ratios (in solar
units, M/L); a recent review of this subject
is given by Faber and Gallagher 1979. What
we see there is an escalation of M/L from the
small to the large systems: thus M/L is of the
order of unity (or slightly larger) in the solar
neighborhood, of the order of 10 for spiral
galaxies, around 20 for ellipticals and SO's,
of the order of 100 for binaries and small

groups and finally of several hundreds for
cluster of galaxies (on the latter issue see also
Bahcall 1977 and Hoffman et al. 1980).
In particular it happens that M/L is large
whenever evaluated by dynamical methods:
thus for spiral galaxies, for instance, while
M/L has acceptable values for the inner
regions out to 20 kpc. when we move beyond
50 kpc the flatness of the rotation curves
pushes M/L above 100. Clearly dark matter
dominates there: incidentally its spatial
distribution can be easily inferred: on the
assumption of centrifugal equilibrium, v2

GM(r)/r. the constancy of the rotational
velocity implies that M(rfxr and hence that
p'/.r"À which is reminiscent of isothermal
spheres. Likewise, estimates of the mass of
our own Milky Way from tidal effects on
globular clusters or from globular cluster
radial velocities place the mass above
10i2 Me and M/L around 70. A value
consistent with the latter can also be found
from the dynamics of the Local Group,
which, as we know, is dominated by M31
and the Milky Way: if the velocity of
approach of the two galaxies arises from their
mutual gravitational interaction, the total
mass must be of the order of some units in
10i2 Ma and M/L consistently ranges up to
60.
Dynamical methods are also used to determine

the mass of great clusters: most
commonly the virial theorem; it yields values
of M/L of several hundreds and thus much

larger than the M/L's of the constituent
galaxies. On the contrary the X-ray emission
from the cluster cores (Lea et al. 1973, Cava-
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liere and Fusco-Femiano i976, Malina et al.
1978) accounts only for a small fraction,
— 10%. of the virial mass.
We may now try to correlate mass-to-light
ratios to masses and hence to representative
densities: the standard technique multiplies
M/L by an average luminosity function
(Kirschner et al. 1979) and obtains a mass
density. When we use the (M/L)'s of the
solar neighborhood we obtain density limits
in qualitative agreement with (3) above; the
same is true when we estimate the mean
density from the mass of hot gas in clusters
of galaxies. On the contrary, the virial
theorem, mass-to-light ratios of great clusters
and the analysis of the correlation function
send Qq to values of the order of unitv (Davis
et al. 1978).
Thus observational cosmology suggests the
view that most of the cosmic matter is in
some hidden form, of which all we know is
that it gravitates and that it is very likely
dissipationless (Gunn 1978). If so, the fact
that unseen matter is needed more at the
larger scales, may be related to the fact that
on the scales of galaxies ordinary baryonic
matter did have the time to cool and sink in
the potential wells; on the scales of cluster
of galaxies instead, cooling times are longer
that the age of the Universe and the
separation between visible and invisible
matter has not vet occurred.

2. Gravitational Instability in the Universe

a) The Jeans and the Silk Masses

Our Universe is homogeneous on the large
scales (> 100 Mpc), but shows a considerable
amount of dumpiness and structure at the
small ones (<10 Mpc). Among the main
tasks of modern cosmology is the explanation

of that degree of structure; we think
it is a problem of following theoretically the
evolution of this structure as it grows by
self-gravitation from a slight perturbation
in an initially uniform and expanding
medium. This view meets serious difficulties
on the mass scales of galaxies, as we will see,
even if we postulate very "ad hoc" initial
conditions. Thus, the situation is far from
satisfactory; there are hopes however that we
are close to a major breakthrough. In the

sequel we will review the basic facts
following Weinberg (1972).
We define our vocabulary starting from the
elementary theory of Jeans instability: in a

uniform (hence infinite) self-gravitating
medium the evolution of a small, linearizable
perturbation of all the quantities describing
the fluid is studied via the equation of
continuity, Euler's and Poisson's equation. We
condense all this in a simple, second-order,
partial differential equation for the density
enhancement (ôp/p).

o~
ciV2 àp

P
- 4 n G p

àP

P
(1)

where cs is the sound speed. Clearly we seek
a solution of the form

ôp
/. c\p ilk • \•*' e/ tf (2)

and we find the elementary dispersion
relation

Mr k~ c2 — 4 n G p (3)

The latter tells us that on the small
wavelength side of the perturbation spectrum, we
have genuine sound waves, eo2>0, while
on the large wavelength side we have an
instability. cy2<0, with two exponentially
growing and decaying modes; in the limit
k -> 0, the e-folding time is given by

1

Ve 4 n G p (4)

The separation between the two regimes
occurs at a Jeans wavenumber

kj (4 n G p/c2)1''2 ;

the corresponding wavelength is

/;j 2 7t/kj.

(5)

(6)

In the sequel in order to apply the concept
of gravitational instability to expanding
cosmologica! models, where a length would
not be an invariant quantity, we prefer to
introduce a Jeans mass

M,
4 n

3 "if (7)
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Furthermore it is convenient to modify and
generalize (7) in two ways. Firstly, we want
to make sure that p in (7) contains only the

proper mass density of the constituent
particles without any contribution from the
internal energy; thus we write explicitly in
place of p the product nx mH of the number
density times the mass of the individual
particles, protons, say. In this way we can

compare the behavior of a given rest mass
under different conditions in the history of
the Universe, regardless of the associated
thermal energy. Secondly, we observe that
(6) gives us a measure of the strength of the

gravitational field and. in order to generalize
(7) to the case of strong fields, we recall that
in general relativity not only the rest-mass
but any form of energy and pressure feel the
gravitational field: we thus replace p in (5)
by (/H-p)/c2. The more general expression
for the Jeans mass,

Mr n nil
71 C2 C2

G(/: + p).

3/2

(8)

: nx mHx c\ p 0. Then (8) yields

Mj i/21 l + p

where

4aT3

kT
mi.c

Mr

tp 3 n k

Mj^(mHc2/k T)3/>/Me,

As hydrogen forms, zdcc£ 10' < zeq. the

picture changes substantially because
radiation disappears from the budget

£ nmHc2+ -- nkT.

p n k T,
5 kT
3 m h

(9)

(10)

is the specific entropy or pholon-to-baryon
ratio. The latter is a large number. 108-r 1010

(see also the recent estimates due to Olive
et al. 1981, from nucleosynthesis and mass-
to-light ratios). Then (9) "has a high temperature

limit

then (8) yields

5kT«3/2
Mr n "1 ''2 m h

2
•

(13)

(14)

which starts as low as

MjS 10y!.ÄMoS 10-V I06MC

is of interest in radiation dominated cases.
We can now apply (8) to various regimes of
interest: thus, for instance, before hydrogen
formation. T>4000 K, the cosmic medium
is a mixture of black-body radiation. c a T4.

p c/3, and non-relativistic protons. I

(ID

and a low temperature limit where it levels
off at the very high value

MjS ?/2 M0, (12)

at Zjec and drops thereafter as R The
above behavior of the Jeans mass is sketched
together with the Jeans mass of the massive
neutrinos in figure 4.

Comparing the Jeans mass with the typical
mass of galaxies, MGs 10n MG, we see that
there are three regimes of interest. In the
first phase, Mg>Mj. any oscillation
involving a mass of the order M0 will grow
due to self-gravity: in reality this growth
would occur in a radiation dominated epoch
which must be studied with a general*
relativistic treatment (see sect. 2b). After this,
there is a second phase where Mc; < M, in
which any perturbation on the scale of MG
oscillates at constant amplitude; whether or
not a relativistic treatment is needed,
depends on the value of >/ in the sense that,
as before, a large amount of radiation cannot
be described properly in Newtonian terms.
Finally, there is a third and last phase
z< 10 where Mg>Mj and any matter
perturbation on the scale M® grows by self-
gravitation in a matter dominated
background.

The above discussion may not seem to relate
very strongly to objects like galaxies, since it
does not single out a mass of the order of
M0, Silk (1968), Peebles and Yu (1970) and
Weinberg (1971) show instead that a mass
around MG comes very naturally into play
when dissipation mechanisms are taken into
account.
Dissipation arises as a consequence of the

imperfect coupling between the photon and
the baryon component of the cosmic
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medium: this is the case when the photon
mean free path for collisions with the
electrons

L (nc (7T (15)

(where <rT= 2/3 x 10"24 cm2 is the Thomson
cross-section) becomes long enough for the
photon to random-walk out of the perturbation.

Obviously this occurs increasingly as
ionization decreases.
In first approximation the physics of this
phenomenon may be studied by treating
photons and baryons as a non-perfect fluid
endowed with shear and bulk viscosity and
heat conductivity (they are all proportional
to I..). It is found that a sound wave of mass
M will be damped at the end of ionization
bv a factor

exp - (Md/M)2'3

MDsiol3(ßBnh2r.v4Mo. (17)

A fluctuations of the mass of a galaxy will
suffer substantial damping and will unlikely
survive to the matter dominated era.

b)The Influence of the Cosmic Expansion

The expansion of the Universe is
conveniently described by the time evolution
of the familiar scale factor R(t) of the Fried-
mann-Robertson--Walker (FRW) line
element. In the simplest case R(t) obeys the
Einstein field equation (see later)

R/'R V 8 re G p/J (1)

Thus, the expansion time scale is uncon-
lortably close to the time scale for gravitational

collapse given in (a.4). Since the
formation of galaxies occurs in the
expanding Universe, we are forced to
generalize our theory of gravitational
instability to the case of an expanding
medium. This has been done by Lifshitz in
1946 in the full glory of general relativity;
a much simpler yet very indicative New¬

tonian approach to this problem was given
by Bonnor 1957; a recent review is given by
Field 1975. On the other hand, when we
consider sound waves

k S-» k,.

frequencies are very large and the expansion
of the Universe may be neglected.
Let us review briefly the description of the
unperturbed model. The assumptions that
are commonly accepted in cosmology are
that the correct theory of gravity is general
relativity where the gravitational field is the
metric tensor.

ds2 gn»dx"dx*. % 0 0,1.2.3. (2)

(16)

and the dynamical equations of motion are
Einstein's field equation.

Thus, the attenuation will be negligible if
M^Md and will be substantial in the
opposite case: recent estimates (Jones 1976)
give for the Silk mass the expression

8 TT G
" fi ^ Äj fi ~ c*4 T,/ ß

Tf:/i 0.

(3)

(4)

We have introduced for complete generality
the cosmological term. A; Gnfl is the Einstein
tensor and Tag the energy-momentum tensor
for which we use the perfect fluid expression.

*p />'
p. -f p| u« u/> m p goß

^

u® dxa/ds. (5)

Once we specialize the metric tensor (2) to
the FRW form.

ds2 c2dt2
R2(t)

(l + kr2/4)2
R|x'+dy2 + dz2'L (6)

appropriate for dealing, in comoving
coordinates (u°= l,uk 0) with a uniform
medium expanding isotropically, from (3) we
obtain

R 4jtG
R 3c2~O t 3p)+ le-,

R\2 kc2 8 s G 1

R
+

R2 ~ TïH+ 3
-,c

(7)

(8)

Equation (7) shows the deceleration of the
cosmic expansion under self-gravity (to
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which pressure gives a contribution) and the

accelerating role played by a positive A; (8).
which generalizes (1), is a first integral of (7).
Under the assumption (5), (4) yields an

energy conservation equation.

dt
U'R3)- p|r>. 0. (9)

Together with an equation of state, which we
usually assume of the form

0. (10)

where

<5g- ~ I + àg,22 + %ss) • (14)

and the assumption of adiabaticity. i)p cj<S>.

has been used. By perturbing the (0)-com-
ponent of (4) and the equation of continuity
(11), we find for /.-* m. respectively

d St:

dt g + p
d r)n

dt n

1 d
~

2 dt
1 d

2 dt

<5g.

fig.

(15)

(16)

to deal at least schematically with dust,
radiation and a maximum stiffness fluid
(e, •• c). we have now stated all the rules,
equations (8), (9) and (10). which a cosnto-
logical model must obey.
For every particle component we have a

continuity equation

(nu");<3 0. (U)

which yields the conservation of total
number in comoving volume:

n R3 const.

1 d f d
_

R S R" S,>s
8 TT G

1 + 3

The comparison between the last two gives
the result

On

n
d'L

p
(17)

(12)

which is again a statement of the adiabaticity

of the perturbation. If we replace in (13)
fig and fit: by (16) and (17). we end up with a

single differential equation

1 d d dn
R2 dt dt n

4 71 Ci

c
<5n

(£ + p)| 1 + 3 \
x # t n

18)

We now perturb the equilibrium solution
given above by introducing small and linear-
izable changes in the thermodynamic
quantities, dn.ifc.dp.du" and in the
gravitational field. dg,,0: for the latter we limit
ourselves without loss of generality to the

gauge <5go„ 0.
Lifshilz' solution contains also radiative and
rotational modes which decay away with the

expansion of the Universe and which we
wall not consider. The compressional normal
modes are found to obey a relatively simple
equation in the long wavelength limit
appropriate to study the gravitational
instability (a straightforward derivation is

given in Harrison 1967).
By perturbing the (OO)-component of the
field equations (3), we find

This is the sought generalization of the
limiting case of (a.l for A-* v. : it takes into
account the expansion and the strong
gravitational fields (with the regeneration of the

pressure) and is valid for any value of the
curvature and of the cosmological constant.
The most important novelty of (18) is that
it replaces the exponential growth of the
Jeans instability with a much more modest
law. tipieally a power law. To see this, let
us assume k 0 for simplicity and let us look
for a solution in the form

<>n

y t". (19)

For the three values of y in (10) we find the
results of table 1, where give the growing
and the damping mode, respectively.
The most important result we read in table 1

is that in an Einstein-de Sitter Universe

(13)
ft»

1

1 + z
7. f
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Table 1

R ^5
a

c

fmA # c-
0

2
- 1

ÔTGP 3

3D I
i t' '

3
1

\ .3
i ~ i

| j|,| c2
1

4
— 1

24 n G t2 3

and radiation fluctuations is minimum (as in
isothermal fluctuations) and not maximum
as in (21) (Davis and Boynton 1980): in that
case the theoretical predictions for purely
isothermal fluctuations are certainly below
the present detection threshold, but an order
of magnitude improvement of the current
instrumental sensitivity will critically test the
gravitational instability picture for galaxy
formation.
Equation (18) is valid in all generality: let us
consider the case of dust (p=0. cs 0); it
reduces to

the growing mode amplifies in the linear
reaime accordine to the law

<>n

/: f 1 4* Z
(20)

IT
T /dec 3

dn

« 'dec
(21)

On the contrary (see Partridge 1980) the
experimental limit, which is also the present
limit of sensitivity of our detectors, is already
down to

#T
T

10 (22)

and seems to indicate the existence of a conflict

between theory and observations. There
are ways out: the most obvious is that there
might have been a reheating (early star
formation) and consequent reionization of
the cosmic medium. In that case further
Thomson scattering would have blurred any
imprint left in the microwave background
by condensing galaxies or larger objects.
Alternatively we must take into account the
possibility that the coupling between matter

<)/'

P
1 d d

R2 dtRV4*G" <5 0. (23)

In particular, the amplification available
between decoupling l+zdec=103, and the
present is just by a factor 103; thus a
perturbation which enters non-linearity at the
present (!n/n= 1 at l+z=l) at decoupling
had an amplitude ln/n= 10~-\ The latter
amplitude should be observed in the form
of a small scale (< 1°) distortion in the microwave

background: under the assumption of
perfect adiabaticity. in fact

and in this form analytic solutions are known
for any value of f20 (provided A 0). In
particular ßy< l (k~ - 1) is of interest
according to the considerations of section I

for a low-density baryon cosmology. We
plot in figure 1 the solution for the growing
modes given in Weinberg 1972. Inspection of
the figure gives us as a rule of the thumb the
notion that in the • 1 case the growing
mode grows as in (20) only for /> D., but
levels off thereafter. Thus for Qn — 0.1 the
total amplification available is only 100

(and not 1000 as in the Einstein-de Sitter
case): temperature fluctuations in the microwave

background of amplitude around 10~2

could be expected and the lack of their
detection is disturbing (Boynton 1978).
A solution of this problem is given by
Doroshkevich et al. (1974) (see also Gott
1979): they consider the case of perturbations

obeying the Zel'dovich (1970) condition
which is the assumption that a) all the
perturbations are purely adiabatic and that
b) they have the same amplitude A= 10 4

on all mass scales when they enter the
horizon (see also Press 1980). These authors
find that on scales smaller than the Silk mass
(~ 1014 Me) all the fluctuations are damped
as expected by photon viscosity, while on
scales just larger than the Silk mass the
fluctuations not only survive, but also
undergo a two-order of magnitude
amplification due to "velocity overshoot".
Press and Vishniac (1980) have however
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1000 Fig. 1. Plot of the amplification of the growing modes in
cosmological dust models with .-1 0 and vs.
redshift. In the Einstein-de Sitter <L>. 11 case the
straight diagonal lines apply: thus if at the

present the initial bp/p was 10"?, 10"2 and 10 1 at

ifz 10'. 102 and 10. respectively. For open models,
Q$< 1. however, the amplification is reduced considerably

with disturbing implications on the microwave
background: however, a low-density model may be
closed (k + 1 when Mfti 1 and .4 » Ö because

k x (üq - 1)4-/1 c2/(3 Fin).

In that case the growing modes amplify better than in
the Ö0 1 case, as shown in figure 2.

-1.0 f

Fig. 2. Level curves of the
amplification of the growing

modes in a pure
harvon Universe assuming

that the linear growth
starts at Zdcc— 1000.
Broken lines- define the
constraints k»'0, .1 0

and The labels
on each curve define the
total amplification available

oh that curve; thus
the curve labelled 10'

goes through the Einstein-
de Sitter model q0

0.5. This plot shows
that in the region of the
plane where k -» 4- 1 and
-f > -Tcri: the linear
amplification may exceed
considerably that of an
Einstein-de Sitter model.
These results must be
compared with those
given in figure 10 below.
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shown that the effect is in reality a

consequence of an inaccurate treatment of
decoupling, i.e. of the assumption that it is
instantaneous. An accurate treatment of
hydrogen formation shows no sign of
overshooting in agreement with previous results
of Peebles and Yu (1970).
A possibility of removing the mentioned
difficulties with the microwave background
has been described by Occhionero et al.
(1980); it is found investigating the dust
solution of (23) after allowing, for complete
generality, also for a non-vanishing A term.
In that case, dust models form a biparametric
set: the first parameter is the density
parameter Qa we met in 1 a.2) and which we
now replace by

(24)

in order to agree with the established
conventions (e.g. McVittie 1965). while the
second parameter is the deceleration parameter

q,}=-{RR/R2)0. (25)

In terms of these

kc2

/( c2

3 =<70 —q0; (26)

clearly for I — 0 the (aü. q0) parameter plane
degenerates into a straight line.
In figure 2 we present some of the results:
broken lines define the curves k 0,
/! 0 and A Aan. (It is known from the
general theory of the FRW models that
when k + 1 we must have A > /(cnl otherwise

the cosmologie expansion reverts into a
collapse.) Solid lines define the loci of points
where the amplification of the density
contrast between zdix 1 ()' and the present
has a well defined value, which is the label
on each curve. Thus we see that the interesting

region on the plane satisfies both k + 1

and A > /icrii: indeed these growing modes
amplify better than a factor 103 (which is the
curve going through the Einstein-de Sitter
model ffo q0 0.5).

In the framework of a low-density Universe,
these consideration apply only if H0

100 km/s/Mpc. H{y'=10xl09 y and we
must resort to the cosmological term for the
age problem (see also figure 3). If so. the
order of magnitude improvement of the
growing mode amplification results partly
from curvature and partly from the increased
time span available for growth: indeed in
the limiting case A Aah. the cosmic
expansion is suppressed and power laws are
again replaced by exponentials.
Let us now return to the era immediately
before decoupling when baryons and
photons are coupled by Thomson scattering
and energetically equivalent: incidentally we
may define the equivalence redshift between
matter and radiation at

l+zeq=4x lOUQ,,!!2. (27)

and say that for /. > z radiation dominates
while matter (p 0) dominates afterwards,
z<zcq. The perturbations of the cosmic
medium, we have discussed above are
adiabatic in the sense that radiation and
matter are perturbed together and the ratio
of photon to buryon number is kept constant.
We have another fundamental mode of
perturbation, however: the isothermal one.
where only baryons are perturbed, but the
background radiation is left unperturbed.
In this case since the number of baryons per
photon is changed we have an entropy
perturbation. Mészàros (1974) addresses the
question of whether given a completely
uniform distribution of particles and
radiation, can a perturbation of the particle
distribution only grow. Under the assumption

of flatness of space-time (k 0) and.
more importantly, of no interaction between
the particles and" the relativistic substratum,
beside of course gravitation, the answer is
that no growth is possible until the Universe
is radiation dominated, but growth becomes
possible thereafter.

3. High Density Universes

a) A Neutrino Dominated Universe

The experimental measure of the electron
neutrino rest mass by Lubimov et al. (1980),



14 eV < m^.c2 <46 eV. (1)

makes it quite plausible that the sought
hidden mass is in fact in the form of massive
neutrinos, as it was suggested with considerable

foresight by many authors. The
conventional view holds instead that the unseen
matter is ordinary baryonic matter of low-

luminosity such as dust, subluminous stars,
black holes, rocks, etc.
Gershtein and Zel'dovich (1966) and Cowsik
and McClelland (1972) compared the

present known cosmic density in baryons
with the theoretical cosmic density in
neutrinos (see later) and derived an upper limit
for the mass of the latter. Later on. Cowsik
and McClelland (1973) assumed that massive

neutrinos might dominate the gravitational

dynamics of large clusters of galaxies
and did build on this basis a simple model
for the Coma cluster. Szalav and Marx
(1976) called attention to the fact that
density fluctuations in a primordial neutrino
gas may initiate the formation of clusters of
galaxies. An early review of neutrino cosmology

is given by Bludman (1976) while
Markov (1964) calls attention to degenerate
massive neutrino superstars.
We will now examine the cosmological
impact of the neutrino rest-mass as it has been
studied by many authors (Zel'dovich et al.
1980. Bisnovaiyt-Kogan et al. 1980.

Schramm and Steigman 1980 and 1981.

Bond et al. 1980, Klinkhamer and Norman
1981. Sato and Takahara 1981) who have

come essentially to similar conclusions; it
seems possible that we may solve at the same
time the hidden mass problem of section 1

and the gravitational instability problem of
section 2. In particular we will hold the
view that the condensations of galactic or
larger scale started out as massive neutrino
condensations at z>s !04; only after photon-
baryon decoupling. Z^10J, were the
barvons capable of falling into the neutrino
gravitational wells. The possibility that massive

neutrinos are distributed like the

galaxies is made plausible by the remark that
the Universe does not possess a significant
smooth component (Yahil et al. 1978).
The neutrinos we have around today in our
Universe originated in the Big-Bang (we
assume left-handed neutrinos of the

Majorana type); at temperature in excess of

1 Mev (> mv) all neutrinos of the three types
(e./or) were in thermal equilibrium and an
extremely relativistic (ER) Fermi distribution

was established for each flavor (i)

— (gi/h3) [exp (q c/kT)+ 1 ] 1. (2)

We assume a vanishing chemical potential
(Weinberg 1972) and g; 2 (as it is the case

for Majorana neutrinos, while it would be

g, 4 for Dirac neutrinos). As the temperature

drops below I Mev the weak interaction
rate falls below the expansion rate and
thermal equilibrium is lost; however since
both T and momentum fall like 1 R. the
distribution function (2) remains formally
unchanged down to the non-relativistic (NR)
region and the present. Clearly T has not the

physical meaning of a temperature. By
integration of (2) over momentum space we can
relate the number density of neutrinos to the
number density of photons:

where

n -4(10(1", 2.7 K f. (4)

As the temperature drops below the electron
mass, electron-positron pairs annihilate and

generate photons: it is known (Weinberg
1972) that

a, (T <0.5 M eV) 11

n T > 0.5 M eV
~ 4 ' 3

hence the photon temperature jumps by a

factor (ll/4)1''3 due to the electron-positron
annihilation and remains higher by the same
factor during the whole history of the

Universe.
Thus the total number density of neutrinos
now is given by

X n>*

3 X v x f, n fe 300 (T. /2.7 K)\ (6)

Nowadays the neutrinos are non-relativistic;
the associated mass density is the sum of
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their proper masses. Assigning each neutrino
flavor the same average mass

m„ m30 (mr c2 /30 eV),
30 eVs 5 x 10 32

g. (7)

we end up with a present density in neutrinos
which is very large

Au=2x 10-~29m30gcm~3. (8)

When we compare this with the critical
density (la.l) we have:

ß%^m30h"2's'L (9)

Thus there is a valid candidate for hidden
matter of the density required in large
systems; on the other hand, we must also
hold that baryonic matter is scarce: we
define here a new parameter

Z — PliafpOw (10)

which is small.
The cosmoiogical model we want to explore
now is one of high density

~ f"
m T ßßo 1

•

where ordinary baryonic matter represents
only a minor contamination (clearly very
important for us!).
One question we must face immediately is
whether neutrino rest-masses would affect
the standard Big-Bang predictions: the
answer given by Shapiro et al. (1980) and
Dolgov and Zel'dovich (1981) is negative.
Indeed although both left-handed and right-
handed neutrinos could be present, right
handed neutrinos would not be in equilibrium

at 1 Mev. but would have decoupled
much earlier (kTs> 100 Mev) according
to the Weinberg-Salam-Glashow theory of
weak interactions.
Another issue that must be taken up if (9) is
valid is whether massive neutrinos affect the
theoretical estimates of the age of the
Universe in a way that is still consistent with
the ages derived from nucleocosmochronol-
ogy and stellar evolution (see, e.g., Sym-
balisty et al. 1980). Nucleocosmochronology
gives a lower limit of the order 10 x 109 y,
which does not pose us any particular

problem. However, the ages inferred from
globular cluster stars (Iben 1974) are very
large (more than 12 billion years) for
standard helium abundances and may even
exceed 20 billion years as the helium
abundance is decreased: we must recall that the
Hubble time

Bo'»ION lO'lr 'y.
is the upper limit to the age of a .4 0 FRW
model valid when ß0->0; a high density
model has a short age. < 2/3 x H0'.
The suggestion by Zel'dovich and Sunyaev
(1980; see also Luminet and Schneider 1981)
is to revitalize the cosmoiogical term because
a suitably chosen positive 4-term. can make
the age of the Universe arbitrarily long.
In figure 3 we give some numerical results:
from the equation of motion (2b.8) we first
evaluate numerically the age

% tp)

if* I' dt f dR/R.
8 o

as a function of the pair (<70.q0) and then we
plot on the (r7P. q,,)-plane isochrones, loci of
the points of the same age. We are interested
in exemplificative ages of 12, 14. 16 and 18
billion years; the corresponding curves are
conveniently parametrized by the dimen-
sionless number which assumes the two
sets of values a) 0.6. 0.7. 0.8 and 0.9 for H0

50 km/s/Mpc and b) 1.2, 1.4, 1.6 and 1.8
for H0= 100 km/s/Mpc.
According to (9) Q() ranges between 4 and
1 and a{) ranges between 2 and 0.5: in order
to find a value for the /1-term all we have
to do is to find a value for q0, (2b.26). by the
intersections of the vertical lines cr0 2

(labelled 50 to remind us the Hubble
constant) and (j0 0.5 (labelled 100) with the
ages curves. These intersections occur at
negative values for q0, s - 2. For a not
unlikely intermediate value of H0 (see, e.g.. Van
der Bergh 1981) and from (9).f20:gl for
m3Os0.5: to get an age 13 billion years

Hq ') we should look in figure 3 at the
intersections between the vertical line a0

0.5 and the curve H0t0= 1 which has not
been drawn to avoid further crowding of
figure 3. Again the intersection yields a

negative q0, Ss -1.5, As before this" implies
that the Universe expansion is accelerating
which formally calls for a positive A. (2b.7).
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Fig. 3. Plot on the (<70,qo)-plane of isochrones, loci of
points where the cosmological models have the same

age. We consider ages of 12, 14, 16 and 18 billion years.
We label the curves on the graph by the values of
Het,,: for Ho=50 km/s/Mpc we have a first set of
values Ho to 0.6, 0.7, 0.8 and 0.9 and of corresponding
curves: for H0= 100 km/s/Mpc we have a second set of
values Ho%= 1.2. 1.4. 1.6 and 1.8 and of corresponding
curves. Assuming 11130= 1. according to (3a.9) we have
<?0 0.5 for h 1 or (tq=2 for h 0.5. The intersections
of the vertical lines oyj — 0.5 (labelled 100) and an — 1

(labelled 50) with the corresponding age curves yield
the values for qo: in all cases negative value of qo are
found (of the order =1 or -2). An acceleration of
the cosmic expansion is implied, which means formally
£ >0.

In the history of cosmology the /1-term has

seen many ups and downs (for a review see

Petrosian 1974. and. more recently. Gunn
and Tinsley 1975 and Tinsley 1977): from
figure 3 we see that we are now far from the
A .1cr„ curve which seemed interesting some

years ago due to an apparent accumulation
of quasar redshifts around 2 (the issue has

now disappeared; Tvtler 1981). Our difficulties

with A stem from our failure to understand

its physics, aside from an attempt by
Zel'dovich (1968) to relate A to the quantum
fluctuations of vacuum.

b) The Infall of Baryons onto Massive
Neutrino Condensations

The growth of neutrino density fluctuations
is of fundamental importance for the formation

of the structure we observe in the
Universe. To understand this we must
remark that the growth of baryon fluctuations

is inhibited by photon viscosity until
zdec= 103. while neutrinos decouple from
equilibrium at T= 1 Mev and are collision-
less ever since. This eollisionless feature
deserves some attention: the approaches to

gravitational instability by Jeans. Lifshitz
and Bonnor were all based on the hydro-
dynamic description of matter, that is on the
assumption that the mean free path between

particle collisions is small in comparison
with any characteristic length of the

problem. When we deal with neutrinos the

opposite is true and we must resort instead
to the distribution function and the evolution
of its perturbations: we will quote here the
results of the pioneering work of Gilbert
(1966).
Under the Newtonian approximation, one
describes the uniform cosmic dust by a

eollisionless Boltzmann equation, superposes
the cosmic expansion and introduces a small
perturbation in the distribution function.
The Fourier transform of the density contrast
obeys a Volterra integral equation, which
Gilbert (1966) studies numerically. He finds
that the large wavelength density contrasts

grow monotonically under self-gravitation
and that the small wavelength density
contrasts do not oscillate like sound waves,
but first decrease due to Landau damping
and eventually grow too. The separation
between large and small wavelengths is

given by a Jeans wavelength

/.j [/r<w>/3G/;] 1/2 (1)

which is built with a characteristic mean

square particle velocity rather than with the

speed of sound as (2a.5). The reason why
small wavelength modes increase again after
an initial Landau damping is that in (1) v2

behaves as R~2 while p behaves as R the
Jeans length thus increases as R! 2 while
the wavelength of any perturbation increases

as R and eventually overtakes /.s.
Stewart (1972) also adopts a kinetic theory
rather than a hydrodynamical approach with
the aim of studying the evolution of
condensations of collisionless and massless neu-

128



trinos in a homogeneous isotropic FRW
Universe. After generalizing the formalism
to deal correctly with strong gravitational
fields, he confirms the qualitative picture
that emerges from the Newtonian analysis
and in particular the Landau damping (see
also Lynden-Bell 1967) of the short
wavelength modes.
We must therefore compute the Jeans mass
of the massive neutrinos: let us first set
(somewhat conventionally) at

1 + zNR
RL, C2

3 (4/11 )'/3kT

Mi — n m,If.
6 J (3)

where ).} is given in 1) and n is related to the
distribution function by the generalization of
(a.6) above:

(4)n'/)>300 (2 7 K (l + z)-\

For the ER regime. v c. the Jeans mass
coincides with the horizon mass and we find

MJER

where

16
mr(i-'K m„

2 'm„c2 ^
kT.

/ C Vt>)

m„
He
Ö

1 / 2

:2 X 10~5l

is the Planck mass; this expression appears
as a generalization of that found by
Bisnovatyi-Kogan et al. (1980), which is

interesting because it is constructed in terms
of fundamental constants. Alternatively we
may write for present purposes

M JER v |()2>!
111,0

VIXlü
(1 + Z)3

M® (6)

this is the growing straight solid line in figure
4 which should extend only to z=6x 104 m30
but is used also to slightly lower redshifts.
For the NR regime, we find

1 1 h 1 + Z
<v > - s 6 - km/s,

m.to

and in place of (5)

N4jNR 20m rm_

m„

kT, \3/2

6 x 104 m30. (2)

(7)

(8)

the redshift at which the neutrinos become
non-relativistic in their adiabatic cooling.
For z^zNR the neutrinos are considered to
be extremely relativistic (ER), while they are
considered to be fully non-relativistic (NR)
for z<zNR; strictly speaking in the middle
neither approximation is true, but either is

satisfactory for the purpose of obtaining
order of magnitude estimates. The Jeans
mass is a qualitative concept any way.
From (2.7) we have

(9)

m,, c2

alternatively we write this as

f 1 + / v'2
Mjnr 8 x !08 - -jfjjp"1 Mg,

nW
which we plot as the decreasing straight
solid line in figure 4. The two lines meet at a
redshift

zmax 3.5 x 104m30, (10)

where the Jeans mass attains its maximum

M J max : : 5.5 x 1015 m3Q2 (11)

Strictly speaking this is a slight overestimate
of the true value, which would result from a
better approximation for the intermediate
zone. As many authors have remarked it is

especially gratifying to cosmology that (11)
gives the order of magnitude of the mass of a
cluster of a galaxies; in the scenario we are
presenting here, however, the mass in
baryons must be smaller than (11) by a
factor e. which may mean even two orders
of magnitude.
Condensations on mass scales larger than
Mj,, can grow for z>zNR. but not if they
involve only neutrinos for an argument used
in section 2a. Indeed the Universe is radiation

dominated from the epoch when the
neutrinos become non-relativistic, z zNR.
until

1 + ZRQ =4x104 m30 * (12)

(compare with (2b.27) which applies to bary-
onic matter-radiation equivalence), whereafter

neutrinos take over and the Universe
becomes dust dominated. During this phase,
znr>z>zEq, a density perturbation involv-
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Fig.4. Plot of the Jeans mass in solar masses in a massive neutrino Universe vs. redshitt tor 1- In the extreme
relativistic regime (ER) the Jeans mass grows with time äs shown by the straight solid tine to the left. i.e. according
to (3b.6). this expression being valid only for z>Jt)jR 6x 10*: in the non-relativistic (NR; region the Jeans mass

decreases as shown by the straight solid line to the right, i.e. according to (3b.9). The intersection of the two

straight lines: gives an indication - perhaps slightly in excess - of the maximum of the Jeans mass: this occurs at

WS3.5X HP.

which is < %r and close to the value 2[,q when the Universe starts being dominated by neutrinos rather than bv
radiation and the neutrino perturbations can start to grow. The maximum Jeans mass is of the order

MJmaxa5x 10'S 4 Mb*
m$o

Also shown by broken lines are the Jeans masses for a canonical baryon Universe evaluated with the .formulae given
in the section 2 for two values of the photon-to-baryon ratio, )/= 10'° and 108. The vertical drop at z= 1000 is a

consequence of the fall of the sound speed due to hydrogen formation, assumed to occur instantaneously,

130



ing only the dust component cannot grow,
but continues to expand with the
substratum (Mészàros 1974).
For the Silk mass in baryons in a baryon-
neutrino Universe, generalizing (2a. 17), we
have (Bond el al. 1980)

MD.;.K»VV 5 : M : : (13)

again in a qualitative sense, the latter
reminds the correct range of masses.
In order to study the gravitational coupling
between the baryon and the neutrino
components we will limit ourselves here for
semplicily to mass scales >MJvmax (which
is the most interesting range due to the
likely decrease of the 'fluctuation spectrum
with mass) and to epoch / • s zw by
itself the baryonic content of such a perturbation

- e/(l — i:) M ri,lWas) would undergo
damped oscillations. The formalism of
section 2b yields directly the differential
equations for

U3)

The physics we want to impose to our model
is that St, can grow in the interval zEq>z>
z.dec 103. where instead dB 0 due to photon
viscosity:

<>.. > t ' •

«± j [ - 1 ± V25^2Âë] (14)

For z<zdec, we have (Doroshkevich et al.
1980. Bond et al. 1980. Wasserrnan 1981)

1 d d -

R2 d.
R' dt'^4^'"^

47i Gp{\ (15)

1 d d

R- dt**** "4^C./'d -••.),),

4 s G/oc.dij. (16)

These are valid in all generality for any pair
of (70 and q0. The power solution (14) is
obtained from (16) setting <iB 0 and using
the Einstein-de Sitter approximation valid
for high redshift.

The interesting remark that has been
made is that, due to the inhomogeneous
nature of (15), baryon perturbations can
grow pulled into the neutrino gravitational
wells even if <5B (iB 0 at zdec (Doroshkevich
et al. 1980, Bond et al. 1980, Wasserrnan
1981). Therefore even if all the baryon
perturbations have been damped by photon
viscosity, we only need postulate an initial
spectrum of neutrino perturbations earlier on
at zNR or zmax^zFQ. An idea of the solution
of (15) and (16) can be obtained in the limit
e->0 and for large redshifts (Einstein-de
Sitter approximation): indicating with a

subscript "1" a reference epoch when <5B <iB 0
around zdec, one has

ci1, dv(t/t1)2/-\
<hi= A [(l/t| )2,3 + 2(ty/||1#— 3]. (17)

where for simplicity only the growing mode
of<5, has been considered.
From (17) we draw from the conclusion that
% and <5V lock together and attain the same
values at the present time; it also appears
that the barvon density amplification
defined as

A <iB 1 + z= 1 )/dB 1 + z(), (18)

is formally infinite. We are rather interested
in using in the denominator of (18) the red-
shift of the later epoch when baryons last
interact with the radiation background: let
this be

l+Z=(l + Zi)-dZ, dZ<g(l + Z|).

Then from 17) we find

3 / Ai. \2
,MI+zH_,,(r+zT). <I9)

which tells us that for 1 +z, 1000, Az= 100.

dB(900)S 10~2 dv. Thus an amplification of
physical interest

A ê>B (1 + z= 1 )/(5b 1 + z)

^4(1)/(10-j.T). (20)

would result larger than the amplification of
the neutrino modes by a couple of orders of
magnitudes.

131



2000 1500 1000 1 + Z

Fïg. 5. Plot of the ionization fraction

n.p+nn'

vs. redshift for various values of >:. defined in (3a. 10). Full lines are evaluated via the Saha equation (e.g. Peebles

1971). As expected, the smaller p, the later the ionization drop occurs: for >. 0.01. x drops very rapidly only for
1000. This is the basis for the approximation used in the text to let the barvons fall freely in the interval

zda. + /Jz>z>zacc. 498*108, For comparison, for the same values of c also the approximate formula by Sunyaev
and Zel'dovich (1970 and 1980) is shown by broken lines: in this case ionization lasts much longer than indicated by
the Saha equation.

In fact, decoupling between barvons and

photons is not an instantaneous process but
lasts a certain time. The corresponding thickness

in redshift is of the order of several
^hundreds as we see in figure 5 where we plot
the degree of ionization vs. redshift as a

function of I evaluated either via the Saha

equation (see. e.g., Peebles 1971) or via a

more elaborate treatment due to Sunyaev
and Zel'dovich (1970 and 1980),
Although during this phase the coupling
between barvons and photons is described
correctly only by the method of Peebles and
Yu (1970; for more recent work see Silk and
Wilson 1980), an order of magnitude
information can be extracted from (15) and

f l6) as well. For this purpose we assume that
baryons start falling freely, i.e. obeying (15)
and" (16). at zx z4iec. + âz.Az= 100 with <>B (z,)
— <5B (z[) 0. We then place conventionally at
zdec= 103 the end of any interaction between
baryons and photons having in mind to

evaluate an upper limit to the perturbations
on the microwave background via

dl
T

1

î3B (Alec) - (21)
dec,max

We have integrated numerically (15) and
(16) on the (er0-q0) plane and for various
values of i: with the purpose of
understanding what sort of modifications have
been generated with respect to the results of
figure 2 by the two fluid nature of the
background model.
In figure 6 we study high density models:
full lines give the growth of ciB (normalized
to unity at the present) vs. redshift. broken
lines give the growth of <5,.. Broken and full
lines merge together. For t we consider a

very low value £ 0.01. and an intermediate
one, c 0.5; it turns out that the dependence
on i is minor in the range of physical interest
(which excludes 1). For « 0.01 the first

132



Fig.6. Amplification of the growing modes of baryons and neutrinos in high-density Universe models: <r(, O.S, q0-2 in a); oq=2, q0 - 2 in b). Full lines refer to baryons. dashed lines to neutrinos; we show the cases « 0.01
and « 0.5. When baryon density contrasts are normalized to unity at the present, the baryon curves are un-
distinguishable troni each other, so that we plot only one of them. This means that the total amplification available
to baryons is not very sensitive to the actual value of t, as long as the latter is 1, but depends mainly on the
nature of model, i.e. the coexistence of two self-gravitating fluids, one of which is able to begin its gravitational
condensation very early, at z S z^q s 104 > /.<)„,= 1000. Baryon fluctuations in high density models are shown to
amplify by six orders of magnitude. As far as the neutrinos are concerned instead, their amplification depends
strongly on «; for small « the baryons do not matter and neutrino fluctuations amplify as in (2b.20). On the
contrary for larger « neutrino self-gravity isweak and neutrino fluctuations grow little for zEQ>z>zdK.

öo=0.5

" q0=-2

part of the neutrino growth is virtually that
of an Einstein-de Sitter model (2b.20); for
lower z the neutrino growth rate goes to what
is expected from figure 2. For v. - 0.5 the
neutrino condensations build up very slowly
in the beginning because 50% of the total
matter content (all the baryons) is unable to
condense before zdec; later on. the neutrino
and the baryon growth curve are undistin-
guishable from each other and from the
curves valid for « 0.01. We have in fact
drawn only one curve for the baryons.
The exit from linearity for the baryons and
the neutrinos occurs simultaneously; the
amplification available to r)B is of six orders
of magnitude.
In Figure 7a we examine the paradigmatic
Einstein-de Sitter case, where <5B amplifies
by five orders of magnitude between and
the present - rather than three as in the pure

baryon model - due to the presence of the
neutrinos, provided they are a major
component of the total density (£<0.5). In figure
7b we show that this is basically true even in
a low density Universe, though to a lesser
extent than in high density models of
figure 6.
The dependence of our results from e is
shown in figure 8 where the exemplificative
models of figures 6 and 7 are studied in the
range 0<£< 1; we plot the baryon and the
neutrino amplification vs. e and we consider
the two cases, that the exit from linearity
occurs a) at the present. l+z=l, or b) at
l+z=5. For baryons the dependence on e
is insignificant, for neutrinos it becomes
relevant only for /:-> 1, which is not
interesting. When we assume that linear growth
applies all the way to the present, then the
total amplification depends to a certain

133



Fig. The same as in figure 6 for the Einstein-de Sitter ease in a) and for a low density model in b); in the latter

case qo, taken from the age curves of figure 3, yields an age of the order of 15 billion years. Basically the same

comments of figure 6 apply: due to the early locking of the baryon to the neutrino fluctuation, even when the

total density is low the amplification of the baryon fluctuations exceeds four orders of magnitude, thus justifying
the lack of detection in the microwave background of the condensation's footprints.

extent on the actual values oft% and q(); but
when non-linearity is attained earlier at
l + z=5. which is physically more interesting,

the amplifications available are largely
independent of <r0 and q0 (since the linear
growth is interrupted during the Einstein-de
Sitter phase).
Depending on whether the condition <5,,= 1 is

reached at l + z=l or at l + z=5, we may
evaluate <5V (zFQ) by combining the growth
resulting from the numerical integration of
(15) and (16) with the initial growth given by
(14) between zEQ and zdec. In figure 9 we plot
d,,(zEq) vs. k: in the interesting region c< 1.

the initial neutrino amplitudes are below
KT4.
In figure 10 we present our results for the

amplifications at the present on the whole
(<To — qo) plane for 0.01; the level curves
we obtain there should be compared with
those of figure 2, where the case of a one-
fluid Universe is examined. A couple of
orders of magnitude are gained everywhere;
when we translate this in upper limits for the

microwave background temperature
fluctuations at zdec according to (17), which we

plot in figure 11, we see that we are many
orders of magnitude below the present
detectability. Even for PB(1 +z= 5)= 1. we
read from figure 8 that 0T/T)dec<(5B(zdec)/3
» 10 '\
As we have seen baryon-neutrino, high-
density cosmological models hold great
potentialities for the linear growth of baryon
density enhancements and make less remote
the understanding of the condensed structures

we see. Progress has not been equally
fast in the realm of non-linear condensations,
but some results in agreement with the above
considerations are already available.
The study of the (non-linear) evolution of
spherically symmetric condensations may be

of interest for modelling clusters of galaxies
(Occhionero et al. 1981a and b. and references

therein). During the formation of such
a condensation the matter which
accumulates at the center is swept away from
the space around the condensation itself, so
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Fig. 8. Plot of the baryon
and of the neutrino mode .7
amplification vs. e; full 10
lines refer to baryons,
broken lines to neutrinos. *
In one set of curves, exit
from linearity is assumed
to occur at the present
and the amplifications are
defined as

r)B(l),/<5B(1000),

(5„ 1 )/<>,. (100Q):

in this case each curve is „5
labelled by the fg and p 10
to which H refers. In the
second set of curves, exit
from linearity is assumed
to occur at 1+2=-. 5; in
this case the amplifications
are defined instead as «/s410

and their spread is
confined within the dashed -_3
regions bounded by the 10
indicated pairs of <j0 and
qo-

102

10

1

0.0

that two things occur simultaneously: a
density enhancement at the center and a

density deficit in a spherical concentric shell.
For such an empty shell a theoretical dimension

is given by

L=10(ß0h2r'.'3mj(3Mpc, (22)

where mi5 is the mass in units of 10'5 M0.

0.5
£

1

This must be confronted with the observations

which call for L 50 Mpc (Kirschner
et al. 1981).
A low density solution, f2()h2 0.01, is

certainly possible; it requires a very strong
initial density contrast because the binding
condition (Sunyaev 1971) is
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Fig. f. Amplitude of the
neutrino fluctuation at

Z[:q when exit from
linearity occurs at the

present (the four lower
curves) and when exit
from linearity occurs at
1 + z— 5 (curves within
the dashed region).
Labels define the pairs
J|,«- q0 of the unperturbed
cosmological models. For
.<;<? 1 these initial amplitudes

of the order of
10"4, as in Zel'dovich's
assumption, are enough
to guarantee entrance into
the non-linear growth
well before the present;
on the other hand, when
$äS L larger initial amplitudes

are required
because neutrino self-gravity
is weaker.

0

where z, may be assumed again lo be 1000.

This implies an excess binding energy per
unit mass

äp \ fW
p I, ~ W

"

for which (23) translates into

JL io2.B b(l + z,)>

0 5 £ 1

In a high density cosmological model, f2()h2

âgi, the dimension of the cavity is right if
one assumes ml5= 100 or 1017 Me in such a

condensation. This mass cannot be in bary-
(24) ons and may be in massive neutrinos; when

spread over a sphere of 50 Mpc, it amounts
to the density of 2x 10~29 g/cm3, in agreement

with (a.8). From an energetic point of
view the binding condition is much weaker
than (23) and may be formulated as
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c-0,01. The results given here must be compared with
those given in figure 2: broken lines have the same
meaning; the label on each solid line is the amplification

evaluated again as

Am t)B 1 )/(>£) 1000) ;

it is recalled that riB( 1100) <5«( 1100) 0, The qualitative
trend of the solid lines here is the same as in

figure 2; from a quantitative point of view, however,
there is a gain of two orders of magnitude due to the
gravitational coupling between the two fluids.

Fig. 11, Level curves for an upper limit on the
temperature fluctuations in the microwave background
evaluated under the adiabatic assumption given in
(3b.21 As in figure 10. 0.01. Labels on each curve
define the expected (<3T/T)max for perturbations that
enter non-linearity only at the present. If more realistically

we assume that this occurs at a redshift of the
order of 5 or 10, the linear growth is reduced by not
more than two orders of magnitude; the expected
temperature fluctuations, increased by the same
amount, may remain under the present deteetabiiity.

S^ Berit

:3 [al(oq-q0)J(3 ct„- q0- 1 )]/(2 rt0>,

For example for ero 0.5, q„= ~2< Bcril
0.065 and for <70 2, qQ® -2, Bcril 0.!40.

We give in figure 12 density profiles for
spherical condensations developing from

+ z=1000 with B=Bcrit in high density
cosmoiogical models. We underline that the
structure of each condensation is fully
nonlinear by the present. By contrast in the
standard open model. Qo**O.0\. the choice
B 0.1 implies (<>/>/f)i B/(l + zt)= 10~4
and a linear growth only by a factor
10. In these conditions the density excess at
the center would amount to an incon¬

spicuous 10 % of the same order of
magnitude would result the depth of the
surrounding hole.

Abstract

Several authors have pointed out that massive

neutrino condensations may trigger the
formation of baryonic matter condensations
in cosmology, probably on the scale of
clusters of galaxies. We review their work
and we give new results on the linear growth
of baryon condensations from decoupling
onwards under the influence of self-gravitation

and the gravitational coupling to pre-
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a0= 0,5

QO--1.0

0.663

M 10M#

Ho= 50 Km/sec/Mpc

Fig. 12. Piot of the present
density profiles in units of
the asymptotic density vs.
radius in spherical
condensations developing in
high density cosmological
models. The mean density

is assumed to be
2x 10"29 g/cm-'; this
translates in <sp 0.5 for H0
•* 100 km/s/Mpc (a and c)
and cro=2.0 for H0
« 50 km/s/Mpc (b and d).
An unusually large total
mass of 1017 M© is
involved. mostly in
neutrinos with only a small
fraction e in baryons.
Each condensation is

marginally bound at the
center (B—Bcrj,). The
other details of the
energetics are specified in
the references quoted in
the text: thus the labels 1

and 5 attached to the
curves define an integer n
with which we
parametrize our models. The
evolution is fully
nonlinear; cavities are shown
to develop around each
condensation with dimensions

of the order of
50 Mpc.

Co.0.5
Go* "2.0

B„„. 0.065

_

M= K>nM,

M0= 100 Km/sec/Mpc

Op.2.0
Qo—2.0

Bc,„ 0.140

Ho-50 Km/sec/Mpc

00-2.0
qo—1.0

SU,.0.217

Ho=100Km/sec/»«>c

existing neutrino condensations. We
parametrize our work by the ratio of the present
density in baryons to the present total
density; such a number is likely to be small.
We also allow for a positive cosmological
constant, which - as it has been suggested m

may be needed if the cosmic density in
neutrinos is around the closure value.
As it was already known, we find that the
fractional baryon density enhancements
reach quickly the level of the fractional
neutrino density enhancements and remain

locked to the latter thereafter. Secondly, in

agreement with previous work of ours, we
find that at low redshift the linear growth
of the condensations (of either component)
is stronger in that region of the parameter
space where curvature is positive and the

cosmological constant exceeds the critical
value. If this really applies to our Universe,
the latter argument may further justify the
lack of detection of small scale fluctuations
in the microwave background or, at least,

help push down their theoretical upper limit.
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Finally we give some results on the formation

of non-linear condensations with
spherical symmetry; the motivation for this
work lies in the observation of large scale
voids (linear dimensions of the order of
100 Mpe). A high density Universe is again
preferred because in a low density model
similar condensations would not have
reached non-linear growth.
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