Zeitschrift: Schweizerische Gehörlosen-Zeitung

Herausgeber: Schweizerischer Verband für Taubstummen- und Gehörlosenhilfe

Band: 33 (1939)

Heft: 14

Artikel: Ist der Holunder ein Barometer?

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-926425

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ift der Holunder ein Barometer?

Sonderbare Frage! Ein Barometer zeigt doch schönes und schlechtes Wetter an. Kann man das am Holunder auch ablesen? Wir wollen schauen. In unserm Hühnerhof steht ein Holunder-Strauch. Dieser Strauch blüht jett. Er trägt große, weiße Blütendolden. Diese Dolden sehen aus wie Teller. Wenn die Sonne scheint, streckt der Holunder seine Blüten der Sonne entgegen. Das sieht recht lustig aus. Man meint fast, der Holunder wäre Rellner in einem Hotel. So trägt er seine weißen, runden Tellerdolden auf seinen Aesten, wie ein Hotelkellner die Deffertteller auf dem Arm trägt. Scheint die Sonne, so stehen alle Dolden wagrecht, der Sonne zugekehrt. Jede Blüte bekommt so ihren Sonnenschein. Aber die Blüten auf dem gleichen Ast blühen nicht alle miteinander. Die einen Dolden sind schon verblüht, die Nachbardolde blüht und die nächste ist erst am Aufblühen. So nimmt jede Dolde auf die andere Rücksicht. Würden alle zusammen blühen, dann hätte keine recht Plat an der Sonne. So müssen wir Menschen es auch machen. Wir müssen nicht einander den Plat versperren. Wir müssen einander ausweichen und Platz machen.

Wenn es nun aber regnet, dann wird der blühende Holunderbaum traurig. Er verdreht alle seine Aeste und läßt sie lampen. Alle Blüten stehen nun senkrecht und die Blätter auch. Warum wohl? Damit die Dolden nicht naß und die Aeste nicht regenschwer werden. Wieso aber kann der Holunder seine Aeste und Zweige so verdrehen, wie wir unsere Unterarme? Run, der Holunder hat in seinen Aesten und Zweigen viel lockeres Mark. Dieses Mark kann sich wohl verändern beim Regenwetter. Vielleicht saugt es Feuchtigkeit auf und schwillt an und kann so die Drehung der Aeste herbeiführen. Ich weiß es nicht genau. Aber das weiß ich, daß der Holunder ein rechter Schlaumeier ist. Er kann sich nach dem Weter drehen, wie es ihm paßt. Wenn er das nicht könnte, würden die regenschweren Aeste im Regenwetter abbrechen. So aber hat der liebe Gott ihm die Kähiakeit gegeben, daß er sich auf diese Art schützen kann. Und so ist der Holunder-Strauch doch ein Barometer geworden. Beachtet die Pflanzen bei Sonnenschein und bei Regenwetter, am Morgen, Mittag und Abend. Ihr könnt da recht schöne Entdeckungen machen. -mm-

Entfernungen und Geschwindigkeiten.

Entfernungen und Geschwindigkeit stehen in unmittelbarem Zusammenhange, und zwar in allen Fällen, in denen es sich um die Berechnung, Beobachtung oder Erzeugung von Bewegungen handelt. Denn die Bewegungen dienen
ja bekanntlich der Erreichung von Zielen in
mehr oder weniger großer Entsernung, und
die Geschwindigkeit ist die Art, nämlich die
Stärke oder Intensität der Bewegung.

Wir messen die Geschwindigkeit eines bewegsten Körpers an der Strecke, die er in einer Sekunde zurücklegt. Legt z. B. ein Automobil in einer Sekunde durchschnittlich eine Strecke von 20 Meter zurück, so haben wir damit zusgleich ein Maß für die Geschwindigkeit des Automobils.

Kür uns Erdenmenschen sind die wichtigsten Geschwindigkeiten die unserer Verkehrsmittel, die ja in erster Linie dazu dienen, Entfernun= gen zu überwinden und dadurch weit entfernte Menschen oder Regionen einander gleichsam näher zu bringen. So verschieden unsere Ver= kehrs= und Transportmittel sind, so verschieden find auch ihre Geschwindigkeiten. Das Pferd vermag im Schritt vor dem Lastwagen nur Durchschnittsgeschwindigkeit von etwa 1,1 Meter zu erreichen, im Trab vor dem leich= ten Wagen eine solche von etwa 2,1 Meter, während es im Viergespann immerhin die beträchtliche Geschwindigkeit von etwa 7 Meter, als Reitpferd in der Rennbahn sogar eine solche von 20 bis 25 Meter erreicht, die es jedoch nur kurze Zeit auszuhalten vermag.

Gewaltig steigern konnten wir die Geschwindigkeit der Berkehrsmittel durch die Naturkräfte als Triebmittel. Biele unserer Eisenbahnzüge sahren mit einer Sekundengeschwindigkeit
von etwa 30 Meter, was einer Stundengeschwindigkeit von über 90 Kilometern entspricht. Auto und Flugzeug erreichen bei Rekordsahrten schon Geschwindigkeiten bis zu
etwa 80 Meter in der Sekunde und lassen damit selbst den stärksten Sturm hinter sich, der
es nicht über eine Sekundengeschwindigkeit von
40 Meter bringen kann.

Einige Beispiele von Geschwindigkeiten aus Natur und Technik seien hier festgehalten:

		in	ber S	tunde
Geschwindigkeit einer Libelle	٠. ٢		54	km
Der erste Zeppelin			81	"
Eine Brieftaube im Gilfluge			126	,,