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Abstract
Today, a huge amount of valuable geoscientific data
is unused and stored in analogue and poorly accessible

paper archives. We introduce state-of-the-art
Natural Language Processing (NLP) and Computer
Vision (CV) methods for revaluating these geological
archives. Scanned geological documents are made
machine-readable using Optical Character Recognition

(OCR) and are then classified to predefined
geoscientific classes by a natural multi-language
model conjoined with a multi-class deep neural
network prediction head. Moreover, objects like
maps, profiles, well logs or graphics are detected
employing an object detection model. Trainings on
both models were performed on relatively small
training sets. However, by optimising the hyper-
parameter space utilising random search, we find
excellent scores for the optimised models
benchmarking today's capabilities. As a result, we provide
trained models on data from the Swiss Geological
Survey (SGS), which are freely available and can be
used to revaluate other geological datasets.

Zusammenfassung
Heute liegt eine grosse Menge wertvoller geowis-
senschaftlicher Daten ungenutzt in analogen und
schlecht zugänglichen Papierarchiven. Mit unserem

Projekt stellen wir mit Methoden aus dem
Gebiet «Natural Language Processing» (NLP) und
«Computer Vision» (CV) Möglichkeiten vor, um
diese geologischen Archive aufzuwerten. Gescannte

geologische Dokumente werden mittels
Texterkennung (OCR) maschinenlesbar gemacht und
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anschliessend durch ein Mehrsprachenmodell in
Kombination mit einem Mehrklassen-Vorhersage-
kopf eines tiefen neuronalen Netzes vordefinierten,
geowissenschaftlichen Klassen zugeordnet.
Zusätzlich werden Objekte wie Karten, Profile,
Bohrprofile oder Grafiken durch ein Objekterkennungsmodell

erkannt. Beide Modelle wurden mit kleinen
Trainingssätzen trainiert. Durch die Optimierung
der Modellparameter mittels Zufallssuche konnten

wir jedoch hervorragende Ergebnisse für die
optimierten Modelle erzielen, welche den heutigen
Möglichkeiten entsprechen. Als Ergebnis stellen
wir Modelle basierend auf Daten der Landesgeologie

zur Verfügung, welche frei verfügbar sind und
für die Prozessierung anderer geologischer Datensätze

und Archive verwendet werden können.

1 Introduction

During the last decade, digitalisation has
made great progress in many business
processes of various fields. In the field of geology,

the digital transformation is in most cases

only slowly arising and the opportunities for
analysing ancient mostly analogue geological

data by employing artificial intelligence
is huge. In Switzerland, the Federal Council
has given an important impetus towards
digital transformation within the geoscience
field with the approval of the action plan
«Digitisation of the subsurface» (swisstopo
2021) which stays in relation to the report
on measures originated from the «Postulate
Vogler, 16.4108: Geological data on the
subsurface» (Swiss Council 2018). Three of the
eight measures of the action plan aim to
advance the digitisation of geological archives
and to facilitate the accessibility and usabil-
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ity of geological data. In this context, digitised

means scanned, fully text-recognised
and further processed by machine learning
algorithms for full use of the original
analogue geological data.

Starting with the geoscientific archive of the
Swiss Geological Survey (SGS), we develop
methods to revaluate the already scanned

geoscientific reports. The archive is currently

managed with a meta-database storing
attributes like title, author, location, and data

usage restrictions (Hayoz et al. 2009). Today,
it is a time-consuming and inefficient task to
find the most appropriate document for a given

query as a content-related description as

well as full-text search is missing. Therefore,
the SGS wants to build a new semi-automated
data management workflow, which accounts
for the introduced digitalisation mission.
Hence, applications are sought for (a) easy
exchange of freely accessible geological data
between projects and other authorities or
service companies, (b) filtering geological
data with customised queries and full-text
search and (c) providing detailed information

on instances such as figures within
geological reports. With our current project, we
provide methods for filling parts of this gap
by automatically assigning each geological
asset to a predefined geological class and by
detecting graphical objects. We engineer and

optimise state-of-the-art Natural Language
Processing (NLP) and Computer Vision (CV)
models leading to two pipelines for text
classification and object detection. Moreover, a

web application is designed to interact with
the underlying database to pool all available
metadata and capitalise on the NLP and CV

predictions.

The following study is based on SGS-specif-
ic use cases. Hence, data and metadata are
selected and provided by the SGS. However,
all methods and processing steps can be

applied to any geoscientific archive or repository

containing scanned documents. The

source code is deployed and freely available
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under the following Git repository: https://
gitlab.ethz.ch/swisstopo/revaluatearchive

2 Materials and Methods

The Swiss Geological Archive
The SGS maintains a geological archive
containing approximately 45'000 scanned
geoscientific assets such as geological reports,
drilling profiles, maps and other documents
from geological investigations in Switzerland.
Figure lb reveals a simplification of the current

data model of the SGS internal management

system, which is in operation since 2006

(Hayoz et al. 2009). In total, a set of around 20

attributes are recorded for each asset.
Currently, a new data model for geological assets
is under development as well as new applications

for archiving and querying documents
(Oesterling et al. 2022; Brodhag 2022).

Data Labelling & Geoscientific Classes
For the two proposed tasks, text classification

and object detection, sample data are
provided and annotated by the SGS. For this
purpose, the SGS team specified 14 classes
for text classification and 10 instance types
for the object detection task based on data
models, internal applications and domain
knowledge (Tab. 1).

The annotation itself is carried out using the
computer vision annotation tool CVAT (Seka-
chev et al. 2019). In particular, the content of
each pdf document is first carefully checked
by eye and then assigned to one of the
predefined geoscientific classes. Similarly, all
instances are visually surveyed, accurately

framed by ground truth bounding boxes
and allocated to the 10 predefined instance
types. All classes, instance types, number
of documents per class and number of
elements per type are summarised in Table 1.

Workflow & Pre-processing
We develop pipelines consisting of three
sections with pre-processing, model training

and inference for both tasks. Whereas



Fig. 1 : (a) Processing pipeline and storage workflow with pre-processing (grey], training (light green) and
inference (green) for text classification and object detection. Both pipelines access the pdf file archive
through a file share. The corresponding predicted classification results are stored in the document metadata

(text classification) and predictions (objects), respectively, by utilising the Elasticsearch python API.
The web application framework loads the content directly from Elasticsearch and the corresponding file
share with all processed files, (b) Modified and simplified data model from the SGS current meta data
management system, which is used for the underlying metadata in the web application (modified after Hayoz
et al. 2009).
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inference denotes the process of predicting
classes using the trained model. Figure la
illustrates these pipelines together with the
underlying database and the connection to
the designed web frontend.

The pre-processing for the text classification

consists basically of the OCR process.
However, several processing steps before
carrying out the actual OCR need to be
done to enhance OCR results. Therefore,
preparation steps of the scanned pdf files
such as Otsu thresholding, Gaussian filtering

for reducing background noise (Davies
2012, p. 40-42), scaling pages to A4 format
and border cropping, where artifacts from

scanning are carefully removed, need to
be executed. Afterwards, the actual OCR
is carried out using the open-source
application OCRmyPDF in conjunction with the
open-source tesseract engine (Kay 2007).
Then, the text layer of each analysed pdf
is stored as a separate text file. To enhance
the model input, modifications of these
text files need to be done. Therefore, all
symbols except :azAZiiôâÛÔÂèéà as
well as hyphens and words repeating more
than twice are removed. Note that this
pre-processing steps without the last
modification can be used as a standalone OCR

pipeline.
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Class

Total
Number of Instance type

Total

Number of
Number in

train split

Number in

test split
documents elements

Drilling 132 Drilling profile 127 112 15

Economic resources 45 Geological profile 72 60 12

Energy resources 45 Geotechnical profile 26 25 1

Geoenergy 83 Graphic 59 56 3

Geology general 23 Map 110 99 11

Geophysics 74 Photo 43 39 4

Geotechnics 178 Seismic profile 33 31 2 Tab. 1: Predefined
geoHydrology 56 Stratigraphie profile 15 14 1 scientific classes: (left)
Measurements/Lab results 65 Table 89 82 7 classes and number of
Mining 60 Well Log 102 90 12 documents per class for
Natural hazards 86 text classification, (right)
Other 74 instance types, number of
Pollution 91 elements per instance and
Science 102 train/test split for object

detection.

The object detection's pre-processing
section consists of four major steps. Therein,
each pdf page is converted into an image
(jpg) as CV models uses images of identical
size as input data. Therefore, after the jpg
transformation, all images are resized and
normalised to A4 format in order to keep the
model input consistent.

Models
For text classification, we employ the open-
source FARM framework (Framework for
Adapting Representation Models) for training

and inference. In essence, FARM
facilitates the deployment of NLP models by
providing a wide variety of language models
and prediction heads that can be combined
efficiently and reliably (FARM 2021). Here, we

put to work the BERT (Bidirectional Encoder
Representations from Transformers)
multi-language model together with a text
classification multi-class prediction head. BERT

is especially designed to use context. As a

result, the embedding of a single word can
change depending on its usage (Devlin et al.

2019). For training, as illustrated in Figure la,
we augment the data as the labelled number

per geoscientific classes is relatively small
(Tab. 1). Moreover, we apply a stepwise
classification as the occurrence of the geoscientific

classes is imbalanced. First, the model

is trained to classify documents according
to the classes «Geotechnics», «Drilling»,
«Hydrology» and «Other» (step 1 classifier),
where the latter stands for all other classes.

Succeeding initial classification, the model
is trained to classify based on the underrep-
resented but uniformly distributed classes

comprising «Other» (step 2 classifier). To

compensate for the general data shortage,
the model is rigorously trained on several
different training and test sets. The ratio of
the train/test split always amounts to 0.9/0.1.
To maximise the performance, special attention

is paid to hyperparameters by optimising

them using random search (Bergstra &
Bengio 2012). In total, 10 hyperparameters
are sampled per iteration.

For object detection, the pre-trained Faster
R-CNN/X101-FPN model provided by Detec-
tron2 is applied for training and inference
as it reveals highest average precision on
the baseline task (Wu et al. 2019). Detec-
tron2, released In 2019, is the second
generation of Facebook AI Research's (FAIR)

object detection platform and fully
implemented in PyTorch (Paszke et al. 2019). As
illustrated in Figure la, the complete model
is saved after training and then reloaded for
inference. The number of labelled instances

is relatively small (Tab. 1), nevertheless,
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augmentation is not necessary as it would
not improve the results. It is not feasible
to average over several different train/test
splits as it was done for the text classification

due to the model uses high amounts of
computational power. The computational
power increases linearly with the number
of test/train splits. In order to ensure that
each labelled sample occurs in the test
set, we would need at least five test/train
splits. In our case, this would correspond
to a computing time of 10 days per iteration
instead of two. Therefore, we apply a fixed
train/test set with a ratio of approximately
0.9/0.1 (see Tab. 1). For optimisation, six
hyperparameters are sampled per iteration
and optimised by means of random search
(Bergstra &Bengio 2012).

Database & Web Application
As previously mentioned and illustrated in
Figure la, a web application to pool the gathered

results with the already existing meta
data is engineered. We use Elasticsearch as

an underlying search engine as it provides
strong multi-search and full-text search

(Gormley & Tong 2015). However, the two
machine learning pipelines are completely

independent of the database and can be
used standalone to process geological
assets. Input and output files can be specified
manually. The web interface is designed
using Django, a high-level open-source Python
web framework encouraging rapid development

and clean, pragmatic design (Django
Software Foundation 2013). For the database

architecture, the data model (Fig. lb)
together with new attributes from the machine
learning tasks are used. This means,
additional attributes for annotated and predicted

classes as well as for objects are added.
For the latter, additional bounding boxes
for each object are required and need to be
saved in the database. In our case, the whole
application is deployed with docker container

(Merkel 2014) on the Amazon Web Service
(AWS) account of the Federal Office of
Topography swisstopo.

3 Results and Discussion

Text Classification
As introduced, special attention is paid to
hyperparameter optimisation. Figure 2a

displays the evolution of the Fl scores as a
function of iteration length. The Fl scores
are based on k-fold cross-validation and
hence represent averaged values. With 0.923

and 0.905, we obtain two excellent Fl scores
by sampling the hyperparameter space
utilising random search. Interestingly, the two
classifiers reveal a completely different
optimisation behaviour. In particular, the
step 2 Fl score is exceptionally bipartite,
indicating two distinct sets of hyperparameters.

A priori, it seems hardly possible to
rationalise this observation. However,
differences in the hyperparameters show that
the dissimilar number of classes for step
1 and step 2 classifier as well as indistinct
geological classes may lead to this pattern.
A single classification result for a randomly
chosen test set is shown in Figure 2b. The
corresponding non-averaged Fl scores are
0.925 (step 1) and 0.857 (step 2), respectively.

As evident from the confusion matrix, the
document classification model performs
remarkably well, compared to today's
capabilities. Especially for the step 2 classifier,
only a single class, namely «Mining», is
moderately more often predicted than labelled.
It should, however, be noted that this class
is by no means exceptional. The described
behaviour must hence be attributed to the
chosen test set.

Object Detection
For the object detection model, a mean
Average Precision (mAP) of 72.52 is achieved
after around 65 iterations by applying
random search for optimising the hyperparameter

space. Due to high computation
demand, the sampling is terminated after 90

iterations although marginally better precisions

might have be achieved by iterating
for even longer times. Table 2 displays the
Average Precision (AP) per instance type

49



Step 1 classifier Step 2 classifier

3

' J
V ' /

3
Drilling -

Hydrology

Mining

Economic resources

Geology general

Measurements/Lab

Energy resources

Geophysics

Geoenergy

Natural hazards

Pollution -

Science

Other

Fig. 2: la) F1 score as a function of iteration length
for both classifiers, step 1 (left) and step 2 (right).
The red points highlight the optimal values found
by random search, (b) Confusion matrices for step
1 (left) and step 2 (right) classifier based on a

randomly chosen test set with non-averaged F1 scores
of 0.925 (step 1) and 0.857 (step 2).

with the optimal hyperparameter set. The
AP varies from 61.69 up to 86.34. However,
three instance types show AP of 100 or 0 and
cannot be considered. There is only one or
two objects within the corresponding test
split as the labelled data is too small. Therefore,

an AP of 100 or 0 can be seen only as a

random hit. The instance type «Photo» and

«Map» achieve the worst APs with 63.35 and
61.67, respectively. For the latter, this can
be explained by the fact that maps also can

Average

Instance type Precision

(AP)

Drilling profile 80.81

Geological profile 86.34

Geotechnical profile 100

Graphic 75.64

Map 61.67

Photo 65.35

Seismic profile 100

Stratigraphie profile 0

Table 71.63

Well-Log 83.95

AP50 77.39

AP75 73.96

Tab 2: Average Precision per instance for optimal
hyperparameter set with a mean average precision
of 72.54 and an AP50 of 77.39 (i.e., AP with loU > 0.5)
and an AP75 of 73.96 (i.e., AP with loU > 0.75).
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Fig. 3: Confusion matrices for Intersection over Union (loU) range between 0.5 to 0.95 and score threshold
range from 0.5 to 0.95 for the object detection task.

contain legends and ground truth bounding
boxes might be difficult to annotate. On the
other hand, all other classes show confident
APs of greater than 70.

By taking the Intersection over Union (IoU)
into account, AP with IoU > 0.5 (AP50) and
IoU > 0.75 (AP75) are calculated (Tab. 4).
The IoU indicates how accurate the model

is compared to ground truth object markings.

Thereby, it appears that AP50 (77.39)
achieves only a marginally better AP than
AP75 (73.96), indicating that the model
accurately marks detected objects.

A similar pattern is observed, when looking
at the confusion matrix with an IoU range
from 0.5 to 0.95 and score thresholds from
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Fig. U-. Engineered web application for querying meta data specifically designed for the needs of the SGS
(a) map viewer including area filter functionalities and geometry tool tip, (b) meta data filter specifically
designed to the users need including export to csv and json and (c) document list section corresponding
to filters from (a) and (b) with «eye» button for advanced information as well as further link to pdf files and
download options.

0.5 to 0.95 (Fig. 3). The score threshold
indicates how accurate the model is with
respect to true label. The first confusion matrices

column on Figure 3 shows increasing IoU

with constant score threshold. In this case,
the model prediction is already fairly accurate

with low IoU. With increasing IoU, i.e.,
with increasing restriction, more elements

are assigned to the null category as it is

expected since it is easier to predict objects
with low IoU. Most prediction errors occur
due to the accuracy of the bounding box and

not due to wrong classification of the detect¬

ed object. On the other hand, we can
emphasise that the model predicts remarkably
many false-positive objects in the null category

(true label) almost independent of IoU,

score threshold or specific object classes.

Moving towards higher score thresholds, the
overall pattern stays the same. However, the
remaining false-positive and false-negative
predictions tend to move towards the null
class, almost independent of the IoU. This
shift can be explained due to the increasing
restriction of both parameters, IoU and score
threshold.
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Web Application
The web application is basically developed
in order to be able to visualise and query
the results of the above described pipelines.
It is designed to meet the needs of the SGS.

Existing meta data of the current meta data
management application (Hayoz et al. 2009)

are used together with our newly created
(meta) data from the two machine learning
models. Basically, the application dashboard
consists of three major elements, displayed
in Figure 4: a) Geographical map view, b)
attribut filter and c) table view of search
results. For querring data, a geographical map
search for filtering geological assets based

on its loacation (Fig. 4a) as well as an attribute

filter (Fig. 4b) is implemented. Of course,
both search masks can be combined as
desired. In addition, further details on a specific

geometry may be displayed by hovering
over individual geometries in map view. The
filters with drop down menu for document
and object classes refer to newly generated
data from the two machine learning models.
Search results are shown in a table view,
ordered by ID (Fig. 4c). By clicking the «eye»

button, detailed information comprising all
attributes of the respective asset can be
explored. Moreover, it is possible to directly
view and explore each page and querying for
specific objects. Finally, there are also download

functions, on the one hand for meta
data as json or csv and, on the other hand,
a direct download of the corresponding
geological asset as pdf.

U Conclusions

We engineered key tools for processing
scanned geological archive data. Our two
processing pipelines can take on three important

tasks on the digitisation path towards
fully digitised and structured subsurface
data. The OCR process generates digital base
data after scanning the analogue data and

paves the way for further digital processing
and reuse of previously unstructured data.

The introduced deep learning algorithms
build on this foundation and offer the
possibility of carrying out detection and
classification tasks towards structured geological
data. Automatised categorisation to specific
geoscientific classes offer the possibility to
query only relevant topics and methods for
answering a desired geological question. We

think that with simultaneous searches for
specific objects, such as stratigraphie profiles

or maps, the gathered data open up new
and easy searchability in the field of geology.
The geological archive of the SGS can be
significantly revaluated with the combination
of the engineered pipelines, web application
and the already existing meta information for
geological assets.

However, the proposed methods have
limitations and room for improvements. The
most relevant model performance limitation
can mainly be attributed to the small number

of labelled data per geoscientific class,
both for the text classification and the
object detection task. For both tasks, this number

is clearly at the lower end. More data
will most likely improve the results. However,

with the actual data volume, it is difficult
to predict a scaling effect when adding more
labelled data. Nevertheless, we assume that
it would be possible to improve the results
by doubling the labelled data. At the same
time, it would be possible to assess the
extent to which a further increase in data has

an impact on the model performance. Moreover,

the text classification is limited by the
rather ambiguous definition of the classes.
Other experts (i.e., geoscientists) will
perhaps not agree with the classifications. This
fact can also lead to considerable difficulties

when another expert labels new data.
There may be inconsistencies in the training
set and the model becomes worse instead
of better. This indicates that unique classes
with little room for interpretation are important.

In any case, even with measures like
this, it is impossible that all experts
completely concur with the classifier and the
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classification. This clearly highlights the
heterogeneity in geological data as well as

how and by whom geological data is
interpreted. Nevertheless, this current release
based on small training datasets shows
already excellent results benchmarking
today's capabilities.

5 Outlook and Further Applications

Our study represents the initialisation of
the digital transformation with the employment

of artificial intelligence at the Swiss

Geological Survey (SGS). During the next
development steps, our proposed methods
will be operationalised, which shall lead to a

next generation data management process.
The idea is to facilitate the digitisation of
geological archives and by this to unlock
their extensive and valuable information.
For that, the SGS plans to incorporate the
proposed methods into online digitalisa-
tion tools, which may support the digitisation

process of other geological archives,
for example from federal offices, cantons,
or private companies. In fact, the aim is to
provide tools for processing unstructured
scanned geological data and to support the
geoscience community on the digitalisation
pathway without any direct data gathering
benefit for the SGS. The final goal is to
provide the public easy access to the possibility

to digitise geological data. This will lead
to a better understanding of the geological
subsurface as access to digital and analysed
data will be much easier than to analogue
archives. In addition, the proposed pipelines

are fully open-source and can be used
to process any geoscientific archive and
transfer the scanned (analogue) rudimentary

managed digital document repositories
into a fast, simple and performant search
engine.
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